首页> 中文期刊> 《计算机仿真》 >部分监督加权模糊C-均值算法的聚类分析

部分监督加权模糊C-均值算法的聚类分析

     

摘要

模糊C-均值(FCM)算法具有对样本集进行等划分趋势的缺陷,对于团状、每类样本数相差较大的数据集,FCM算法的最优解可能不是数据集的正确划分,基于以上原因,以少量的先验知识作为部分监督信息,再利用样本点分布密度大小作为权值,提出了一种新的部分监督加权模糊C-均值(PSWFCM)算法,并且该算法的加权系数的计算和点密度范围限定值的选取都具有客观性.仿真结果证明,PSWFCM算法不仅在一定程度上克服了FCM算法的缺陷,而且具有良好的收敛性和鲁棒性,聚类效果也有较好的改善.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号