首页> 中文期刊> 《计算机仿真》 >人脸与声音结合的矿井人员签到识别

人脸与声音结合的矿井人员签到识别

     

摘要

矿井时有安全事故发生,签到管理系统可及时、准确掌握人员出入人员状况,保障矿井安全生产,方便及时救援.针对传统签到管理系统用于矿井,遇到光线昏暗、人脸易附着粉尘、干扰噪音等因素影响,签到识别方法检测率低,提出了—种根据KL变换(Karhunen-Loeve Transform)和TAN分类(Tree-Augmented Naive Bayesian network)相结合的人脸识别,并辅以声音识别的方法.通过形态学滤波变换快速去掉大部分无用背景,使处理更快速,特征点更突出;自动根据具体环境选择图像识别或声音识别,使识别准确率更高.仿真结果表明:结合声音的系统识别方法既减小了计算复杂度,又提高了人员识别率,还增强了适应性.%Coalmine accidents happen sometimes. It is significant to know the accurate statement of the miners in coalmine or outside, which is convenient for rescue. When the traditional Sign—in Management System was used in coal mine, the system meets new problems, such as black, hazy face, etc. Aiming at this issue, this paper put forward a face recognition algorithm based on the combination of Karhunen—Loeve Transform and Tree—Augmented Naive Bayesian network classifier, which uses the morphological filtering to remove most of useless transform background quickly. In addition, the voice recognition method was addede to that algorithm which makes feature point more outstanding and identification more accuracy, according to the specific environment automatic selection of face recognition or voice recognition. The simulation shows that this algorithm not only reduces the computational complexity and improves the human face recognition rate, but also enhances the adaptability.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号