A self-adaption defect detecting method for automatic software based on the grey correlation is proposed.Firstly,the reference progression reflecting the system behavior feature of automatic software and the comparison progression influencing its system behavior integrated with the grey theory are confirmed.Then,the grey correlation degree is calculated,and the type corresponding to the software defect and the relevant number is given out.Finally,the security feature of software source code is similarly matched with the instance feature of known security to complete the optimization detection of automatic software quality.The simulation results show that the proposed method can improve the detection accuracy and accelerate the detection.%对自动化软件质量优化检测,可以对软件的缺陷进行改进,提高软件的使用效果.对自动化软件质量进行检测时,应提取自动化软件系统行为特征,并计算灰色关联度,在上述基础上,将自动化软件源代码的安全特征与已知安全性缺陷的实例特征进行相似匹配完成检测,传统方法通过获取自动化软件自适应缺陷检测训练集样本,组建质量检测模型,但是不能对自动化软件系统行为特征进行准确提取,无法与已知的缺陷实例进行比对,降低了质量检测的准确率.提出基于灰色关联的自动化软件自适应缺陷检测方法,首先融合灰色理论确定反映自动化软件系统行为特征的参考数列和影响其系统行为的比较数列,并计算灰色关联度,给出软件缺陷所对应的类型和相应的个数,将自动化软件源代码的安全特征与已知安全性缺陷的实例特征进行相似匹配,完成对自动化软件质量优化检测.仿真结果表明,所提方法大幅提升了自动化软件质量检测准确率,并且加快了软件缺陷检测速度.
展开▼