首页> 中文期刊> 《计算机工程》 >融合外部语义知识的中文文本蕴含识别

融合外部语义知识的中文文本蕴含识别

     

摘要

基于神经网络的文本蕴含识别模型通常仅从训练数据中学习推理知识,导致模型泛化能力较弱.提出一种融合外部语义知识的中文知识增强推理模型(CKEIM).根据知网知识库的特点提取词级语义知识特征以构建注意力权重矩阵,同时从同义词词林知识库中选取词语相似度特征和上下位特征组成特征向量,并将注意力权重矩阵、特征向量与编码后的文本向量相结合融入神经网络的模型训练过程,实现中文文本蕴含的增强识别.实验结果表明,与增强序列推理模型相比,CKEIM在15%、50%和100%数据规模的CNLI训练集下识别准确率分别提升了3.7%、1.5%和0.9%,具有更好的中文文本蕴含识别性能和泛化能力.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号