首页> 中文期刊> 《软件》 >基于GLU-CNN和Attention-BiLSTM的神经网络情感倾向性分析

基于GLU-CNN和Attention-BiLSTM的神经网络情感倾向性分析

     

摘要

情感分析是自然语言处理领域(NLP)中重要的语义处理任务,目前处理NLP任务的两大主流模型是卷积神经网络(CNN)和循环神经网络(RNN)以及他们的变体.由于自然语言在结构上存在依赖关系,且重要信息可能出现在句子的任何位置.RNN可能会忽略为了解决这些问题,我们提出了一种新的模型ABGC,将Attention机制加入到BiLSTM中,可以更好捕获句子中最重要的局部信息,同时融合添加GLU(非线性单元)的卷积神经网络(CNN),可以更好捕捉文本的全局信息,然后将两种模型提取到的特征融合,既有效避免了LSTM的梯度消失问题,又解决了CNN忽略上下文语义的问题.我们在两种数据集上进行对比实验,实验结果表明ABGC模型可以有效提高文本分类准确率,同时减少运行时间.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号