首页> 中文期刊> 《计算机应用与软件》 >基于多向测度和属性相似度的混合协同过滤

基于多向测度和属性相似度的混合协同过滤

     

摘要

Similarity measurement algorithm in traditional collaborative filtering algorithm has the problems such as inaccurate measure and cannot truly reflect the information,thus results in low recommendation quality.To solve these problems,we propose a new similarity calculation method which is based on multi-directional measurement and project attributes.It uses multi-directional measurement to calculate the rating similarity of users on project.Meanwhile,it calculates the preference similarity of user on project attributes in combination with the project attributes,and obtains final similarity between users through weighting factor.Experimental results show that the method significantly improves the recommendation precision than the traditional algorithm.%传统协同过滤算法中相似性度量方法存在度量不准确,不能如实反映信息的问题,导致推荐质量不高。针对这一问题,提出一种新的基于多向测度和项目属性的相似性计算方法。利用多向测度方法计算用户对项目的评分相似性,同时结合项目属性计算用户对项目属性的偏好相似度,通过加权因子得到用户间的最终相似性。实验结果表明该方法较传统方法显著提高了推荐精度。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号