首页> 中文期刊> 《计算机应用与软件》 >改进ABC算法优化LSSVM的网络流量预测模型

改进ABC算法优化LSSVM的网络流量预测模型

     

摘要

为了提高网络流量预测精度,针对最小二乘支持向量机LSSVM (Least Squares Support Vector Machine)参数优化问题,提出一种改进人工蜂群ABC(artificial bee colony)算法优化LSSVM的网络流量预测模型(ABC-LSSVM).该模型根据混沌理论对网络流量时间序列进行重构,然后将网络流量预测精度作为优化目标,通过ABC算法找到最优的LSSVM参数,并建立网络流量预测模型,最后采用仿真对比实验测试模型的性能.仿真结果表明,相对于参比模型,ABC-LSSVM解决了LSSVM参数优化的难题,能够更加准确刻画网络流量复杂变化规律,提高了网络流量的预测精度.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号