首页> 中文期刊>化工学报 >接触式机械密封摩擦界面温度分布分形模型

接触式机械密封摩擦界面温度分布分形模型

     

摘要

为揭示接触式机械密封摩擦界面的温度分布规律,用分形参数表征机械密封端面形貌特性,根据重新建立的微凸体接触变形方式,结合热传导和概率理论建立了机械密封摩擦界面最大温度以及温度分布的分形模型并用数值方法对其最大温度、温度分布规律以及影响因素进行了分析。研究结果表明,当分形维数一定时,随着转速的增大,密封界面最大温度呈线性增大;当转速一定时,随着分形维数的增大,密封界面最大温度呈非线性减小;随着量纲1特征尺度的增大,量纲1最大接触温度也在增大。当已知润滑膜汽化温度时,由温度分布密度函数,可以求出处于非正常润滑部分的真实接触面积,为进一步研究磨损、热破坏提供基础,这对接触式机械密封的实际运行和密封端面的设计具有重要的意义。%In order to reveal the temperature distribution of the frictional interface mechanical seals, the end face morphology of mechanical seals was characterized by fractal parameters. According to re-established contact deformation model of the micro-convex body, the fractal model of the maximum temperature and the temperature distribution of mechanical seals were established by heat exchange and probability theory. With numerical methods its maximum temperature, temperature distribution and influence factors were analyzed. The highest temperature of frictional interfaces increased linearly with increasing rotating speed when fractal dimension was constant. But the highest temperature of frictional interfaces decreased nonlinearly with increasing fractal dimension when rotating speed was constant. Dimensionless maximum contact temperature also increased as dimensionless characteristic scale was larger. When lubricant film vaporization temperature was known, the real contact area of the non-normal lubrication part could be calculated by using the temperature distribution density function, providing foundation for further research on wear and heat damage and had great significance both in operating and design of contacting mechanical seals.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号