首页> 中文期刊> 《中国药理学通报》 >2-脱氧葡萄糖通过降低有氧糖酵解增强白血病K562/ADM耐药细胞对阿霉素的敏感性

2-脱氧葡萄糖通过降低有氧糖酵解增强白血病K562/ADM耐药细胞对阿霉素的敏感性

         

摘要

Aim To investigate the effect of 2-deoxy-D-glucose(2-DG)on the sensitivity of leukemia multi-drug resistant K562/ADMcells to adriamycin by inhib-iting glycolytic pathway as well as its molecular mecha-nisms.Methods The leukemia drug-resistant K562/ADM cells and parental K562 cells were used as the target cell models.The cell proliferating activity was assessed with an MTT colorimetric assay,and the gly-colysis including glucose consumption,lactate export, and hexokinase activity was determined by glucose, lactic acid and hexokinase (HK)testing kits.The ex-pression and phosphorylation of mammalian target of rapamycin(mTOR)and glucose transporter-4 (GLUT-4)expression were analyzed by western blot.Results K562/ADM drug-resistant cells possessed higher HK activity,GLUT-4 expression level and aerobic glycolic ability than K562 sensitive cells. 2-DG treatment markedly inhibited HK activity,glucose consumption, and lactate export both in K562 cells and K562/ADM cells,and suppressed the proliferation of the two cells in a time-and concentration-dependent manner.Low concentration of 2-DG or adriamycin could increase the expression and phosphorylation of mTOR.However, the co-administration of 2-DG and adriamycin markedly counteracted adriamycin-mediated enhancement of mTOR expression and phosphorylation and down-regu-lated GLUT-4 expression in K562/ADM cells,and 2-DG dramatically improved the sensitivity of K562/ADM cells to cytotoxicity.Conclusion 2-DG inhibits the proliferation of drug-resistant K562/ADM cells and en-hances the sensitivity to adriamycin by blocking aerobic glycolysis pathway through inhibiting hexokinase activi-ty,counteracting adriamycin-stimulated increased ex-pression and phosphorylation of mTOR and downregu-lating GLUT-4 expression.%目的研究2-脱氧葡萄糖(2-deoxy-D-glucose,2-DG)通过抑制糖代谢增强白血病K562/ADM多药耐药细胞对阿霉素(adriamycin,ADM)敏感性的作用及机制。方法以白血病K562/ADM及其亲本K562细胞为靶细胞模型,MTT法检测细胞增殖活性,葡萄糖、乳酸、己糖激酶测试盒分析葡萄糖消耗量、乳酸生成量和己糖激酶(hexokinase,HK)活性。Western blot 法检测哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)表达和磷酸化(p-mTOR)以及葡萄糖转运体-4(glucose transporter-4,GLUT-4)的表达。结果与亲本K562细胞相比,白血病K562/ADM耐药细胞HK活性、GLUT-4表达水平和有氧糖酵解能力增强。2-DG能够明显抑制K562/ADM及K562细胞的HK活性、葡萄糖消耗量和乳酸生成量,呈时间-浓度依赖性地抑制白血病细胞的增殖活性。低剂量2-DG和 ADM可诱导 K562/ADM细胞mTOR高表达及磷酸化水平增高,但2-DG与ADM联合则可有效对抗ADM诱导的K562/ADM细胞mTOR高表达和磷酸化,并可降低GLUT-4的表达,提高K562/ADM细胞对阿霉素的敏感性。结论2-DG通过竞争性抑制HK活性和抵抗ADM诱发的代偿性mTOR活化,降低GLUT-4表达,有效阻断有氧糖酵解途径而降低K562/ADM耐药细胞的增殖活性、增强其对化疗药物的敏感性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号