首页> 中文期刊> 《中国化学工程学报:英文版》 >Boosting the hydrogen storage performance of magnesium hydride with metal organic framework-derived Cobalt@Nickel oxide bimetallic catalyst

Boosting the hydrogen storage performance of magnesium hydride with metal organic framework-derived Cobalt@Nickel oxide bimetallic catalyst

             

摘要

In this study,a MOF-derived bimetallic Co@NiO catalyst was synthesized and doped into MgH_(2)to improve the hydrogen desorption and resorption kinetics.The Co@NiO catalyst decreased the onset dehydrogenation temperature of MgH_(2)by 160℃,compared with un-doped MgH_(2).The MgH^(2+)9%(mass)Co@NiO composite released 6.6%(mass)hydrogen in 350 s at 315℃and uptook 5.4%(mass)hydrogen in500 s at 165℃,showing greatly accelerated de/rehydrogenation rates.Besides,the desorption activation energy of MgH^(2+)9%(mass)Co@NiO was decreased to(93.8±8.4)kJ·mol^(-1).Noteworthy,symbiotic Mg_(2)NiH_(4)/Mg_(2)CoH_(5)clusters were in-situ formed from bimetallic precursors and inlaid on MgH_(2)surface,which are considered as"multi-step hydrogen pumps",and provides surface pathways for hydrogen absorption.Meanwhile,the introduced Mg_(2)NiH_(4)/Mg_(2)CoH_(5)interfaces could provide numerous low energy barrier H diffusion channels,therefore accelerating the hydrogen release and uptake.This research proposes new insights to design high-efficiency bimetallic catalyst for MgH_(2)hydrogen storage.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号