首页> 中文期刊>中国有色金属学会会刊:英文版 >Interface structure and formation mechanism of vacuum-free vibration liquid phase diffusion-bonded joints of SiC_p/ZL101A composites

Interface structure and formation mechanism of vacuum-free vibration liquid phase diffusion-bonded joints of SiC_p/ZL101A composites

     

摘要

The vacuum-free vibration liquid phase(VLP) diffusion-bonding of SiC_p/ZL101A composites was investigated. The effects of vibration on the interface structure, the phase transformation and the tensile strength of bonded joints were examined. Experimental results show that the oxide film on the surface of the composites is a key factor affecting the tensile strength of boned joints. The distribution of the oxide layers at the interface changes from a continuous line to a discontinuous one during vibration. The tensile strength of the VLP diffusion-bonded joints increases with the vibration time, and is up to the maximum of 172MPa when the vibration time is 30s. The phase structure of the bond region changes from the Zn-Al-Cu hyper-eutectic (η+(β+η)+(β+η+ε)) phases to Al-rich Al-base solid solution (α-Al) with increasing the vibration time.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号