首页> 中文期刊> 《亚太热带医药杂志(英文版)》 >Protection mechanism of deacetylase inhibitor on spleen of rats with severe hemorrhagic shock

Protection mechanism of deacetylase inhibitor on spleen of rats with severe hemorrhagic shock

             

摘要

Objective: To explore the protection and molecular mechanism of histone deacetylase inhibitors(HDACIs) on the spleen of rats with hemorrhagic shock. Methods: A total of 60 SPF male SD rats were selected for the modeling of severe hemorrhagic shock using the method of arterial and venous cannulation with the time-divided bleeding. The measurement of mean arterial blood pressure and blood lactic acid was used to verify the modeling. The modeled rats were randomly divided into shock group, shock+suberoylanilide hydroxamic acid(SAHA) group, shock+autogenous transfusion group, and shock+SAHA+autogenous transfusion group. Three hours after the treatment, the spleen of rats was collected and TUNEL method was employed to detect the apoptosis of spleen cells in each group. Afterwards, real-time PCR and western blot were employed to detect the expression of BCL-2, BAX, and caspass3 in the spleen of rats in each group. Results: A total of 55 rats had successful modeling of severe hemorrhagic shock, with success rate of 92%. Cell apoptosis in the severe hemorrhagic model group was the most serious. After the intervention of HDACIs and the autogenous transfusion, the tissue injury was a bit recovered. Cell apoptosis was least in the shock+SAHA+autogenous transfusion group(P<0.05). After the intervention of HDACIs and the autogenous transfusion, the relative expression of BCL-2 was significantly increased(P<0.05), with highest relative expression of BCL-2 in shock+SAHA+autogenous transfusion group(P<0.05). After the intervention of HDACIs and the autogenous transfusion, the relative expression of BAX was significantly decreased(P<0.05), with lowest relative expression of BAX in the intervention group of single HDACIs. The change in the expression of caspass3 was similar to BAX, namely the relative expression of caspass3 was significantly decreased after the intervention of HDACIs and the autogenous transfusion(P<0.05). Conclusions: HDACIs and autogenous transfusion can all protect the spleen injury because of the severe hemorrhagic shock. Its molecular mechanism may be related to the regulation on the expression of BCL-2/BAX and caspass3, which may affect the apoptosis process of cells.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号