首页> 中文期刊> 《计算机应用研究》 >基于元学习的多视图对比融合冷启动推荐算法

基于元学习的多视图对比融合冷启动推荐算法

     

摘要

针对当前冷启动推荐模型在处理异质信息网络时难以充分挖掘结构与语义信息,以及忽略网络中用户行为属性的问题,提出了一种基于元学习的多视图对比融合冷启动推荐算法(MVC-ML)。该算法在模型层和数据层双重作用下,有效缓解了冷启动问题。在MVC-ML算法框架中,首先通过元路径视图提取异质信息网络的高阶语义信息;其次,利用网络模式视图捕获网络的结构特征;再接着,通过聚类视图分析用户行为属性信息;最后,运用对比学习方法,将上述三个视图中提炼的信息进行综合融合,以生成准确的表示向量。通过在DBook等三个数据集上的实验验证,MVC-ML模型在冷启动场景下相较MetaHIN等传统异质信息网络模型,在MAE上降低了1.67%,在RMSE上降低了2.06%,同时nDCG@K提高了1.48%。这些数据充分证实了MVC-ML算法的合理性和有效性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号