首页> 中文期刊> 《计算机应用研究》 >基于反向延长增强的对抗生成网络推荐算法

基于反向延长增强的对抗生成网络推荐算法

     

摘要

针对现有序列推荐模型因数据稀疏性严重难以达到最优性能的问题,提出了一种基于反向延长增强的生成对抗网络推荐算法。该方法通过对交互序列进行延长增强来获取高质量的训练数据,以缓解数据稀疏性带来的模型训练不充分的问题。首先,使用伪先验项将项目序列进行反向延长,深化项目序列特征;其次,延长增强的对象由短序列更改为所有用户序列,充分挖掘长序列中富含的上下文信息,缓解了增广序列中伪先验项占比过大而带来的噪声问题;最后,使用共享项目嵌入的生成对抗网络,通过判别器与生成器联合训练以提高模型推荐性能。在三个公开数据集上的实验结果表明,所提模型的命中率(HR@N)和归一化折损累计增益(NDCG@N)相较于最优基线ELECRec平均提升30%,验证了反向延长增强对挖掘序列特征和缓解数据稀疏性的有效性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号