首页> 中文期刊> 《计算机应用研究》 >基于多组学数据和稀疏变分自编码器的生存分析算法

基于多组学数据和稀疏变分自编码器的生存分析算法

     

摘要

针对生存分析中多组学数据带来的维数灾难和过拟合问题,提出了一种基于多组学数据和稀疏变分自编码器的生存分析算法VAESCox。该算法将变分自编码器的基本结构与稀疏编码和生存分析相结合,在无监督阶段训练变分自编码器学习低维表示,在监督阶段将训练的权重迁移到生存分析模型,并对传递权重进行微调和稀疏编码。实验结果表明,在八种不同癌症类型的数据集上,VAESCox模型在消融和对比实验中均取得了较高的C指数值。与其他四种基准生存分析方法相比,所提算法不仅缓解了多组学数据融合的过拟合问题,也显著提高了生存预测性能,表明不同组学数据的融合有助于预后生存结果的精准预测。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号