首页> 中文期刊> 《药学学报:英文版》 >Tetrahedral DNA nanostructures synergize with MnO_(2) to enhance antitumor immunity via promoting STING activation and M1 polarization

Tetrahedral DNA nanostructures synergize with MnO_(2) to enhance antitumor immunity via promoting STING activation and M1 polarization

         

摘要

Stimulator of interferon genes(STING) is a cytosolic DNA sensor which is regarded as a potential target for antitumor immunotherapy. However, clinical trials of STING agonists display limited anti-tumor effects and dose-dependent side-effects like inflammatory damage and cell toxicity. Here,we showed that tetrahedral DNA nanostructures(TDNs) actively enter macrophages to promote STING activation and M1 polarization in a size-dependent manner, and synergized with Mn^(2+) to enhance the expressions of IFN-β and iNOS, as well as the co-stimulatory molecules for antigen presentation. Moreover, to reduce the cytotoxicity of Mn^(2+),we constructed a TDN-MnO_(2) complex and found that it displayed a much higher efficacy than TDN plus Mn^(2+) to initiate macrophage activation and anti-tumor response both in vitro and in vivo. Together, our studies explored a novel immune activation effect of TDN in cancer therapy and its synergistic therapeutic outcomes with MnO_(2).These findings provide new therapeutic opportunities for cancer therapy.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号