首页> 中文期刊> 《地质学报:英文版》 >Geological Fluid Mapping in the Tongling Area:Implications for the Paleozoic Submarine Hydrothermal System in the Middle-Lower Yangtze Metallogenic Belt,East China

Geological Fluid Mapping in the Tongling Area:Implications for the Paleozoic Submarine Hydrothermal System in the Middle-Lower Yangtze Metallogenic Belt,East China

         

摘要

The Tongling area is one of the 7 ore-cluster areas in the Middle-Lower Yangtze metallogenic belt,East China,and has tectonically undergone a long-term geologic history from the late Paleozoic continental rifting,through the Middle Triassic continent-continent collision to the Jurassic-Cretaceous intracontinental tectono-magmatic activation.The Carboniferous sedimentary-exhalative processes in the area produced widespread massive sulfides with ages of 303-321 Ma,which partly formed massive pyrite-Cu deposits,but mostly provided significant sulfur and metals to the skarn Cu mineralization associated with the Yanshanian felsic intrusions. To understand the Carboniferous submarine hydrothermal system,an area of about 1046 km^2 was chosen to carry out the geological fluid mapping.Associated with massive sulfide formation,footwall sequences 948 m to 1146m thick,composed of the Lower Silurian-Upper Devonian sandstone,siltstone and thin-layered shale,were widely altered.This hydrothermal alteration is interpreted to reflect large- scale hydrothermal fluid flow associated with the late Paleozoic crustal rifting and subsidence.Three hydrothermal alteration types,i.e.,deep-level semiconformable silicification(S_1),fracture-controlled quartz-sericite-pyrite alteration(S_(2-3)),and upper-level sub-discordant quartz-sericite-chlorite alteration(D_3),were developed to form distinct zones in the mapped area.About 50-m thick semiconformable silicification zones are located at~1-km depth below massive sulfides and developed between an impermeable shale caprock(S_1)and the underlying Ordovician unaltered limestone. Comparisons with modern geothermal systems suggest that the alteration zones record a sub-seafloor aquifer with the most productive hydrothermal fluid flow.Fracture-controlled quartz-sericite-pyrite alteration formed transgressive zones,which downward crosscut the semiconformable alteration zones, and upwards grade into sub-discordant alteration zones that enveloped no economic stringer- stockwork zones beneath massive sulfides.This transgressive zone likely marks an upflow path of high- flux fluids from the hydrothermal aquifer.Lateral zonation of the sub-discordant alteration zones and their relationship to overlying massive sulfide lenses suggest lateral flows and diffusive discharging of the hydrothermal fluids in a permeable sandstone sequence.Three large-sized,14 middle-small massive sulfide deposits,and 40 massive sulfide sites have been mapped in detail.They show regional strata- bound characters and two major styles,i.e.,the layered sheet plus strata-bound stringer-style and the mound-style.Associated exhalite and chemical sedimentary rock suites include(1)anhydrite-barite,(2) jasper-chert,(3)Mg-rich mudstone-pyrite shale,(4)barite lens,(5)siderite-Fe-bearing dolomite,and (6)Mn-rich shale-mudstone,which usually comprise three sulfide-exhalite cyclic units in the area. The spatial distribution of these alteration zones(minerals)and associated massive sulfides and exhalites,and regional variation inδ^(34)S of hydrothermal pyrite and inδ^(18)O-δ^(34)C of hanging wall carbonates,suggest three WNW-extending domains of fluid flow,controlled by the basement faults and syn-depositional faults.Each fluid domain appears to have at least two upflow zones,with estimated even spacing of about 5-8 km in the mapped area.The repeated appearance of sulfide-sulfate or sulfide-carbonate rhythmic units in the area suggests episodically venting of fluids through the upflow conduits by breaking the overlying seals of the hydrothermal aquifer.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号