首页> 中文期刊> 《化学学报》 >离子热法合成AEL磷酸铝分子筛膜及其机理研究

离子热法合成AEL磷酸铝分子筛膜及其机理研究

         

摘要

以δ-氧化铝为基底和铝源,使用离子热基底自转晶法,在[EMIm]Br离子液体中合成了AEL磷酸铝分子筛膜.采用X射线(XRD)和扫描电镜(SEM)等方法对所得的AEL分子筛膜进行了表征,研究了合成条件对膜的影响.研究发现在氢氟酸和磷酸离子液体混合溶液中一步反应可以合成c轴高度取向的AEL分子筛膜,在氢氟酸和磷酸离子液体溶液中分别顺序两步反应可以合成无取向的AEL分子筛膜.离子热基底自转晶法分子筛膜的形成符合固相转化机理,氟离子可以促进分子筛膜的生长,并影响分子筛膜的取向.%Highly c-oriented AEL aluminophosphate molecular sieve membranes were ionothermally synthesized on the surface of δ-alumina substrate by "Substrate Surface Conversion" method. The typical synthesis procedure can be described as follows: a δ-aluminia alumina disc was put into l-ethyl-3-methyl imidazolium bromide ([EMIm]Br) solution containing reagent quantities of phosphoric acid (H3PO4) (85 wt% in water, AR) and hydrofluoric acid (HF) (40 wt% in water, AR). The synthesis was performed at 210 ℃ for certain time. No additional Al source is added into the synthesis solution. After the synthesis, the as-synthesized sample was washed thoroughly with distilled water and acetone for several times by ultrasonic vibration and dried at 120 ℃ overnight. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were carried out to characterize the products. The synthesis process of AEL membrane via "Substrate Surface Conversion" can be divided into two separated steps, which is carried out in the ionic liquid solution of HF and H3PO4 in turn. We termed this route as ionothermal two-step method, which making it possible for us to investigate the effect of HF and H3PO4, respectively. The formation mechanism of "Substrate Surface Conversion" was therefore demonstrated, with which the δ-alumina substrate acts as both support and Al source during the synthesis process. The surface of the substrate is first converted into a gel layer by the solution. The layer is a heterogeneous phase, which contains all nutrients required for the crystallization of molecular sieve membrane, including the aluminophosphate precursor, the mineralizer and the structure directing agent. The transformation from the gel layer into membrane is probably of solid-solid formation mechanism. The whole synthesis process needs the participation of both H3PO4 and HF. H3P04 is an essential component of both aluminophosphate precursor and molecular sieve crystal. The crystallinity and the orientation of synthesized membranes can be greatly influenced by adjusting the amount of HF in the initial solution, which may act as both structure directing agent and mineralizer during the synthesis process of molecular sieve membrane.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号