首页> 外文学位 >Extending the Cutoff Wavelength of Thermophotovoltaic Devices via Band Structure Engineering
【24h】

Extending the Cutoff Wavelength of Thermophotovoltaic Devices via Band Structure Engineering

机译:通过能带结构工程扩展热电设备的截止波长

获取原文
获取原文并翻译 | 示例

摘要

Thermophotovoltaics (TPVs) convert infrared radiation, or heat, into electricity via a photovoltaic diode. While TPVs can in principle convert radiation from any heat source, in practice they have been limited to high temperature applications due to the relatively large bandgap diodes employed. Development of narrow bandgap TPV diodes is required to optimally convert longer wavelength radiation from lower temperature sources. Overcoming the intrinsic limit of these reduced bandgap diodes, however, is no trivial matter. As the bandgap of a TPV diode decreases, the intrinsic carrier concentrations and parasitic recombination increase, leading to large dark currents. The increased dark current causes the open-circuit voltage and power of the diode to drop, rendering narrow bandgap TPV diodes inoperable.;Our research aims to extend the operational cut-off wavelength of TPV devices to both a) more optimally convert the incident radiation from existing heat sources and b) enable lower temperature applications. With this goal in mind, we investigate a monovalent barrier structure, in which a wide bandgap barrier is inserted into the PN diode, for TPV devices. The barrier structure has proven successful at reducing dark currents in infrared photodetectors, which operate at low temperatures and reverse biases. TPV diodes must operate at higher temperatures, where the balance of dark current mechanisms differs. Here we explore the extent to which a monovalent barrier could be effective in reducing the dark current in narrow bandgap TPVs.;The barrier diode design is facilitated by the use of superlattice structures, which consist of alternating nanometer-scale layers of materials. Unlike bulk materials, where the electronic bands are fixed, the electronic bands of these structures can be tuned by varying the thickness and periodicity of the superlattice layers. In this work we use the 8x8 k˙p method to design the band offsets for a barrier structure consisting of III-V superlattice materials. Structures were grown using molecular beam epitaxy and fabricated into diodes using standard photolithography methods. Dark current measurements were taken to examine the effect of a barrier structure on TPV performance.
机译:热光电(TPV)通过光电二极管将红外辐射或热量转换为电能。尽管TPV原则上可以转换任何热源发出的辐射,但实际上,由于采用了相对较大的带隙二极管,因此它们仅限于高温应用。需要开发窄带隙TPV二极管来最佳地转换来自低温源的更长波长的辐射。然而,克服这些减小的带隙二极管的固有极限并不是一件容易的事。随着TPV二极管的带隙减小,本征载流子浓度和寄生复合增加,导致大的暗电流。增大的暗电流导致二极管的开路电压和功率下降,从而使窄带隙TPV二极管无法工作。我们的研究旨在扩展TPV器件的工作截止波长,以便a)更优化地转换入射辐射来自现有热源的热量; b)能够实现较低温度的应用。考虑到这一目标,我们研究了用于TPV器件的单价势垒结构,其中将宽带隙势垒插入PN二极管。事实证明,该隔离层结构成功地减少了在低温和反向偏压下工作的红外光电探测器中的暗电流。 TPV二极管必须在较高的温度下工作,在此处暗电流机制的平衡有所不同。在这里,我们探讨了在窄带隙TPV中单价势垒可以有效减少暗电流的程度。势垒二极管的设计是通过使用超晶格结构来实现的,该结构由交替的纳米级材料层组成。与散装材料不同,电子带是固定的,可以通过改变超晶格层的厚度和周期性来调整这些结构的电子带。在这项工作中,我们使用8x8 kp方法来设计由III-V超晶格材料组成的势垒结构的能带偏移。使用分子束外延生长结构,并使用标准光刻方法将其制成二极管。进行暗电流测量以检查势垒结构对TPV性能的影响。

著录项

  • 作者

    Licht, Abigail S.;

  • 作者单位

    Tufts University.;

  • 授予单位 Tufts University.;
  • 学科 Energy.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号