首页> 外文学位 >Characterization and Numerical Simulation of the Microstructural and Micromechanical Viscoelastic Behavior of Oil Sands Using the Discrete Element Method
【24h】

Characterization and Numerical Simulation of the Microstructural and Micromechanical Viscoelastic Behavior of Oil Sands Using the Discrete Element Method

机译:离散元法表征油砂微观结构和微机械粘弹性行为及数值模拟

获取原文
获取原文并翻译 | 示例

摘要

Oil sands are naturally geologic formations of predominantly quartz sand grains whose void spaces are filled with bitumen, water, and dissolved gases. The electric rope shovel is the primary equipment used for excavating the Athabasca oil sand formations. The equipment's static and dynamic loads are transferred to the formation during excavation and propel. These loads may reduce the oil sand shear strength and cause instability leading to sinkage or rutting, crawler wear, and fracture failures. These problems result in unplanned downtimes, production losses, and high maintenance costs. In order to address these problems, there is a need to develop valid models that capture the behavior and performance of oil sands under these loads. Particle-based physics methods, such as the discrete element method (DEM) can provide useful insight into the micromechanical and microstructural behavior of oil sands. This research is a pioneering effort towards contributing to the existing body of knowledge in oil sands formation characterization and numerical simulation using the DEM. These areas include oil sands as a four-phase material, shovel-formation interactions, and coupled deformation-stress under dynamic loading. A 2-D DEM model of the oil sands is built and simulated in PFC2D. The simulation results show that the generalized Burgers model with five Kelvin---Voigt elements fully characterized the microscopic viscoelastic response of the material. The micromechanical and microstructural viscoelastic model developed in this study can predict the dynamic modulus and phase angle of the material with a maximum error of 13.6%. This research initiative is a pioneering effort toward understanding shovel-oil sands formation interactions using a micromechanical and microstructural particle-based mechanics approach.
机译:油砂是主要是石英砂晶粒的自然地质构造,其空隙空间充满沥青,水和溶解气体。电铲是用于挖掘阿萨巴斯卡油砂地层的主要设备。在开挖和推进期间,设备的静态和动态载荷会传递到地层。这些载荷可能会降低油砂的抗剪强度,并导致不稳定,从而导致下沉或车辙,履带磨损和断裂故障。这些问题导致计划外停机,生产损失和高昂的维护成本。为了解决这些问题,需要开发有效的模型来捕获这些载荷下油砂的行为和性能。基于粒子的物理方法(例如离散元素方法(DEM))可以为油砂的微机械和微观结构行为提供有用的见识。这项研究是开拓性工作,旨在为使用DEM的油砂地层表征和数值模拟提供现有知识体系。这些区域包括作为四相材料的油砂,铲-地层相互作用以及动态载荷下的耦合变形应力。在PFC2D中建立并模拟了油砂的二维DEM模型。仿真结果表明,具有五个开尔文-Voigt元素的广义Burgers模型完全表征了材料的微观粘弹性响应。在这项研究中开发的微机械和微结构粘弹性模型可以预测材料的动态模量和相角,最大误差为13.6%。该研究计划是利用基于微机械和微结构粒子的力学方法来理解铲油砂地层相互作用的开创性工作。

著录项

  • 作者

    Gbadam, Eric Kofi.;

  • 作者单位

    Missouri University of Science and Technology.;

  • 授予单位 Missouri University of Science and Technology.;
  • 学科 Mining engineering.;Mechanical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 244 p.
  • 总页数 244
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号