首页> 外文学位 >A Confocal Scanning Laser Holography (CSLH) Microscope to Non-Intrusively Measure the Three-Dimensional Temperature and Composition of a Fluid.
【24h】

A Confocal Scanning Laser Holography (CSLH) Microscope to Non-Intrusively Measure the Three-Dimensional Temperature and Composition of a Fluid.

机译:共聚焦扫描激光全息(CSLH)显微镜,用于非侵入式地测量三维温度和流体成分。

获取原文
获取原文并翻译 | 示例

摘要

The Confocal Scanning Laser Holography (CSLH) microscope non-intrusively measures the three-dimensional (3D) temperature and composition of a solid, fluid, or plasma. A unique reconstruction algorithm uses phase-shift data from the recorded holograms and boundary conditions of the specimen to measure the 3D temperature. The CSLH microscope uniquely combines holography with a scanning confocal microscope to determine the phase-shift in a hologram and to reconstruct the 3D temperature. The confocal aspect of the microscope reduces optical aberrations in the hologram and increases sensitivity to a temperature at a scan position in the specimen. The optical design maintains a stationary focal point on the pinhole aperture within the confocal optics during scanning.;Reconstruction of the 3D temperature given restricted scanning from a single viewing window places a burden on the reconstruction algorithm to produce low reconstruction error. Three-dimensional reconstruction using methods of tomography prove inaccurate due to the small cone angle. The result is ill-conditioned reconstruction matrices. A unique low reconstruction error algorithm given a single viewpoint window that specifies a particular scanning geometry and requires boundary conditions is derived for the microscope.;This research involved the design, building, and evaluation of a specific CSLH microscope intended for fluid flow and heat transfer studies in micro-gravity space based experiments. The fluid specimen used to evaluate the microscope sets a benchmark for resolution, sensitivity, and performance. The reconstruction error is primarily due to measurement error, residual optical aberrations affecting holograms, and vibrations since the reconstruction algorithm error is negligible. Additional knowledge gained includes the understanding of sensitivity to optical alignment as well as methods to accurately determine the phase-shift in a varying fringe contrast hologram. A significant trade-off is that as the cone angle of the probe beam increases, the reconstruction error decreases but the optical aberrations increase. One of the more difficult challenges during scanning is to maintain a fixed focal point on the confocal apertures as the beam is tilted off the optical axis centerline.;Further recommended advancements for the microscope are improving the optical lenses to provide pupil planes that are stationary during scanning and the miniaturization of the microscope using diffraction grating lenses instead of glass lenses for more practical applications. Determining the internal temperature of a flame by passing a focused laser beam through the flame is an example of a practical application. The CSLH microscope is uniquely capable of non-intrusively measuring the 3D temperature of a specimen given a single viewpoint window for scanning with applications in the physical and biological sciences.;The CSLH microscope uses a focused laser beam instead of a collimated beam to probe the specimen. The advantage of the focused probe beam over the collimated beam is that different phase-shift data is obtained for each scan position of the probe beam. Another advantage is preventing rotational scanning of the laser about the specimen or rotating the specimen, increasing the number of practical applications. This limits the scan angle to the cone angle of the probe beam only.
机译:共聚焦扫描激光全息(CSLH)显微镜非侵入式地测量三维(3D)温度和固体,流体或等离子体的成分。独特的重建算法使用来自记录的全息图和样本边界条件的相移数据来测量3D温度。 CSLH显微镜将全息技术与扫描共聚焦显微镜独特地结合在一起,可以确定全息图中的相移并重建3D温度。显微镜的共聚焦方面降低了全息图中的光学像差,并增加了对样品扫描位置温度的敏感性。光学设计在扫描期间在共焦光学器件内的针孔孔径上保持稳定的焦点。在从单个观察窗进行受限扫描的情况下重建3D温度会给重建算法带来负担,从而产生较低的重建误差。使用层析成像方法进行的三维重建由于锥角小而被证明是不准确的。结果是病态的重建矩阵。给出了独特的低重建误差算法,该算法在给定单个视点窗口的情况下指定了特定的扫描几何形状并要求边界条件;该研究涉及特定CSLH显微镜的设计,构建和评估,该显微镜用于流体流动和传热微重力空间实验的研究。用于评估显微镜的流体样本为分辨率,灵敏度和性能设定了基准。重建误差主要是由于测量误差,影响全息图的残留光学像差和振动所致,因为重建算法误差可忽略不计。获得的其他知识包括对光学对准灵敏度的理解,以及在变化的条纹对比全息图中准确确定相移的方法。一个重要的权衡是,随着探测光束的锥角增加,重建误差减小,但是光学像差增加。扫描过程中最困难的挑战之一是当光束从光轴中心线倾斜时,要在共焦孔上保持固定的焦点。显微镜的进一步建议改进是改进光学透镜,以提供在运动过程中固定的瞳孔平面扫描和微型化使用衍射光栅透镜而不是玻璃透镜的显微镜,以更实际的应用。通过使聚焦的激光束穿过火焰来确定火焰的内部温度是实际应用的示例。 CSLH显微镜具有独特的功能,能够在物理和生物科学应用中的给定单一观察窗口的情况下非侵入式测量样品的3D温度; CSLH显微镜使用聚焦激光束而不是准直光束来探测样品。聚焦的探测光束优于准直光束的优点是,对于探测光束的每个扫描位置获得了不同的相移数据。另一个优点是防止激光围绕样品旋转扫描或使样品旋转,从而增加了实际应用的数量。这将扫描角度仅限制为探测光束的锥角。

著录项

  • 作者

    Jacquemin, Peter B.;

  • 作者单位

    University of Victoria (Canada).;

  • 授予单位 University of Victoria (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 424 p.
  • 总页数 424
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号