首页> 外文学位 >Bayesian methods to characterize uncertainty in predictive modeling of the effect of urbanization on aquatic ecosystems.
【24h】

Bayesian methods to characterize uncertainty in predictive modeling of the effect of urbanization on aquatic ecosystems.

机译:贝叶斯方法表征城市化对水生生态系统影响的预测模型中的不确定性。

获取原文
获取原文并翻译 | 示例

摘要

Urbanization causes myriad changes in watershed processes, ultimately disrupting the structure and function of stream ecosystems. Urban development introduces contaminants (human waste, pesticides, industrial chemicals). Impervious surfaces and artificial drainage systems speed the delivery of contaminants to streams, while bypassing soil filtration and local riparian processes that can mitigate the impacts of these contaminants, and disrupting the timing and volume of hydrologic patterns. Aquatic habitats where biota live are degraded by sedimentation, channel incision, floodplain disconnection, substrate alteration and elimination of reach diversity. These compounding changes ultimately lead to alteration of invertebrate community structure and function. Because the effects of urbanization on stream ecosystems are complex, multilayered, and interacting, modeling these effects presents many unique challenges, including: addressing and quantifying processes at multiple scales, representing major interrelated simultaneously acting dynamics at the system level, incorporating uncertainty resulting from imperfect knowledge, imperfect data, and environmental variability, and integrating multiple sources of available information about the system into the modeling construct. These challenges can be addressed by using a Bayesian modeling approach. Specifically, the use of multilevel hierarchical models and Bayesian network models allows the modeler to harness the hierarchical nature of the U.S.
机译:城市化导致流域过程发生无数变化,最终破坏了河流生态系统的结构和功能。城市发展会引入污染物(人类废物,农药,工业化学品)。防渗表面和人工排水系统加快了污染物向河流的输送速度,同时绕过了土壤过滤和局部河岸过程,这些过程可以减轻这些污染物的影响,并破坏水文模式的时间和规模。沉积物,河道切口,洪泛平原断开,底物改变和河道多样性的消除使生物群所居住的水生生境退化。这些复合变化最终导致无脊椎动物群落结构和功能的改变。由于城市化对河流生态系统的影响是复杂的,多层的且相互作用的,因此对这些影响进行建模面临许多独特的挑战,包括:在多个尺度上处理和量化过程,代表系统级别上主要的相互关联的同时起作用的动态,并结合了不完美导致的不确定性知识,不完善的数据和环境可变性,并将有关系统的可用信息的多种来源集成到建模构造中。这些挑战可以通过使用贝叶斯建模方法来解决。具体而言,使用多层层次模型和贝叶斯网络模型可以使建模者利用美国的层次性质。

著录项

  • 作者

    Kashuba, Roxolana Oresta.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Statistics.;Environmental Sciences.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 498 p.
  • 总页数 498
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号