首页> 外文学位 >Genetic and mechanical analysis of tube morphogenesis in the living Drosophila embryo.
【24h】

Genetic and mechanical analysis of tube morphogenesis in the living Drosophila embryo.

机译:果蝇活体胚胎中管形态发生的遗传和力学分析。

获取原文
获取原文并翻译 | 示例

摘要

Morphogenesis requires simultaneous force generation and cell deformation. Although the transcriptional control of force generation has been studied, the concurrent modulation of cellular material properties to enable deformation has remained purely speculative. In this work, we develop high-resolution live imaging of deep tissue morphogenesis in the Drosophila embryo and combine live imaging with genetic and mechanical analysis to better understand the role of the Ribbon BTB domain transcription factor in salivary gland and tracheal morphogenesis. These studies indicate a novel role for Ribbon-mediated transcription in the modulation of apical membrane material properties during epithelial morphogenesis.;Despite its many advantages as a model organism, the Drosophila embryo has proven difficult to image live, predominantly due to extensive light scattering from tissue pigmentation and refractive index variation. Consequently, live imaging in the Drosophila embryo has been limited to surface epithelia or to bright and shallow structures such as the late trachea. To achieve high-resolution imaging of deep tissue morphogenesis, we utilize microscopy theory and experimentation to troubleshoot poor image quality in live salivary glands expressing alpha-catenin-GFP and nuclear DsRed, ultimately optimizing a highly sensitive custom two-photon microscope to achieve high quality images while preserving cell viability.;Using fixed samples, we find that Ribbon functions with another BTB domain protein, Lola Like, to upregulate crumbs expression. We also find that Ribbon is required to downregulate apical Moesin activity subsequent to invagination and that constitutively active Moesin can mimic the ribbon mutant phenotype. TEM indicates that ribbon mutants exhibit decreased numbers of apical vesicles and increased microvillar structure, defects consistent with Crumbs and Moesin function. Based on studies in other systems, we reasoned that the decreased Crumbs and increased Moesin activity observed in ribbon mutants could affect the material properties of the apical membrane. Indeed, high-resolution live imaging of ribbon mutants reveals slowed and incomplete lumenal morphogenesis, and mechanical models suggest that ribbon mutant epithelia fail primarily in cell extension due to approximately 2-fold increased apical stiffness and 1.6-fold increased apical viscosity. We conclude that Ribbon and Lola Like function as a novel transcriptional cassette regulating material properties of the apical membrane during morphogenesis.
机译:形态发生需要同时产生力和细胞变形。尽管已经研究了力产生的转录控制,但同时调节细胞材料特性以实现变形的方法仍纯粹是推测性的。在这项工作中,我们开发了果蝇胚胎中深部组织形态发生的高分辨率实时成像,并将实时成像与遗传和力学分析相结合,以更好地了解Ribbon BTB域转录因子在唾液腺和气管形态发生中的作用。这些研究表明功能区介导的转录在上皮形态发生过程中对顶膜材料特性的调节中具有新作用。尽管果蝇作为模型生物具有许多优势,但已证明其难以成像,主要是由于果蝇的大量光散射所致。组织色素沉着和折射率变化。因此,果蝇胚胎中的实时成像仅限于表面上皮或明亮而浅的结构,例如气管晚期。为了实现深部组织形态发生的高分辨率成像,我们利用显微镜理论和实验来对表达α-catenin-GFP和核DsRed的唾液腺的不良图像质量进行故障排除,最终优化了高灵敏度的定制双光子显微镜以实现高质量使用固定的样本,我们发现Ribbon与另一种BTB域蛋白Lola Like一起上调面包屑的表达。我们还发现,功能区需要在下陷后下调顶端Moesin活性,而组成型活性Moesin可以模仿功能区突变表型。透射电镜表明,带状突变体的根尖囊泡数量减少,微泡结构增加,缺陷与面包屑和肌蛋白功能一致。基于在其他系统中的研究,我们认为在带状突变体中观察到的碎屑减少和Moesin活性增加可能会影响顶膜的材料特性。的确,带状突变体的高分辨率实时成像揭示了缓慢和不完整的管腔形态发生,并且机械模型表明,带状突变体上皮细胞主要由于约2倍的心尖硬度增加和1.6倍的心尖粘度增加而主要在细胞延伸方面失败。我们得出的结论是,丝带和Lola像功能一样,在形态发生过程中调节根尖膜的材料特性的新型转录盒。

著录项

  • 作者

    Cheshire, Alan M.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Biology Cell.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 245 p.
  • 总页数 245
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学;生物医学工程;
  • 关键词

  • 入库时间 2022-08-17 11:38:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号