首页> 外文学位 >Computational models for the bio-chemo-mechanical behavior of cells in diverse extra-cellular settings.
【24h】

Computational models for the bio-chemo-mechanical behavior of cells in diverse extra-cellular settings.

机译:在不同的细胞外环境中细胞生物化学机械行为的计算模型。

获取原文
获取原文并翻译 | 示例

摘要

Computational models for simulating the bio-chemo-mechanical response of the cells in diverse extra-cellular settings are developed in this research. First, we consider the viability of a cytoskeletal model composed of cable-like fibrils as a statically determinate structure. We find that the discrete model of stress fibers lacks the features essential for capturing various aspect of cell behavior. We develop a finite element model based on a continuum mechanics grounded bio-chemo-mechanical model for cytoskeletal contractility and focal adhesion formation. We extend this model to two-dimensional situations and simulate the behavior of cells adhered to flat substrates as well as micro-posts. This modeling scheme is shown to capture a variety of key experimental observations including: (i) high concentrations of stress-fibers and focal adhesions at the periphery of ligand patterns; (ii) high focal adhesion concentrations along the edges of the V, T, Y and U-shaped concave ligand patterns; and (iii) highly aligned stress-fibers along the non-adhered edges of cells. We also use this model to simulate the cell response to varying substrate stiffness, substrate architecture and cell size. Both for flat gel substrates and micro-posts, cell contractility and focal adhesion concentration are shown to be higher for stiffer adhered substrate, which matches with experimental results in the literature. Lastly, we devise a new signaling model for the pathway where a Ca2+ signal originates from focal adhesions growth and activates the intracellular acto-myosin contractile machinery. A one dimensional cell attached to a rigid ligand patch and pulled at one end is utilized to demonstrate the response of a cell having the signaling, stress fiber and focal adhesion models.
机译:在这项研究中开发了用于模拟细胞在不同细胞外环境中的生物化学-机械反应的计算模型。首先,我们将由电缆状原纤维组成的细胞骨架模型的活力确定为静态结构。我们发现应力纤维的离散模型缺乏捕获细胞行为各个方面所必需的功能。我们基于连续性力学为细胞骨架收缩性和粘着斑形成的生物化学力学模型开发了有限元模型。我们将此模型扩展到二维情况,并模拟粘附到平坦基底和微柱上的细胞的行为。该建模方案显示了各种重要的实验观察结果,包括:(i)高浓度的应力纤维和配体图案外围的粘着力; (ii)沿着V,T,Y和U形凹形配体图案的边缘具有很高的粘着浓度; (iii)沿细胞非粘附边缘高度对齐的应力纤维。我们还使用该模型来模拟细胞对变化的基材刚度,基材结构和细胞大小的响应。对于平坦的凝胶基质和微柱,对于较硬的粘附基质,其细胞收缩性和粘着斑浓度均较高,这与文献中的实验结果相符。最后,我们设计了一种新的信号传导模型,其中Ca2 +信号源自粘着斑生长并激活了细胞内肌动蛋白-肌球蛋白收缩机制。一维细胞附着在刚性配体上并在一端拉出,用于证明具有信号传导,应激纤维和粘着斑模型的细胞的反应。

著录项

  • 作者

    Pathak, Amit.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Biology Cell.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学;机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:38:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号