首页> 外文学位 >Nanoscale bulk MOSFET design and process technology for reduced variability.
【24h】

Nanoscale bulk MOSFET design and process technology for reduced variability.

机译:纳米级体MOSFET设计和工艺技术可减少变化。

获取原文
获取原文并翻译 | 示例

摘要

Historically, the steady miniaturization of the conventional (planar bulk) MOSFET by simply scaling the device dimensions with minimal changes to the conventional transistor design and CMOS process flow has been effective to provide for continual improvements in integrated circuit performance and cost per function with every technology node. However, transistor scaling has become increasingly difficult in the sub-100 nm regime. Increased leakage current and variability in transistor performance are the major challenges for continued scaling of bulk-Si CMOS technology.;The benefit of using a spacer gate lithography process to mitigate the effect of gate line edge roughness (LER) is assessed using statistical 3-D device simulations. The simulation results indicate that spacer gate lithography is a scalable technology which can dramatically reduce LER-induced variation in transistor performance.;A tri-gate bulk MOSFET design combining retrograde channel doping with a multi-gate structure is proposed to provide an evolutionary pathway for bulk CMOS scaling. The scalability, design optimization, and the effect of systematic and random variations on transistor performance are investigated. As compared with the classic planar MOSFET design, the tri-gate bulk MOSFET provides for superior electrostatic integrity and reduced variability. As compared with SOI FinFET design, the tri-gate bulk MOSFET design is more scalable and less sensitive to device design parameters. As compared with the bulk FinFET design, the tri-gate bulk MOSFET offers comparable performance and variability. Its low-aspect-ratio channel structure is favorable for ease of manufacturing. Thus, the tri-gate bulk MOSFET is a promising structure for CMOS scaling to the end of the technology roadmap.;The fabrication process flow and the most critical processes for tri-gate bulk MOSFET fabrication are discussed. Initial device results show that tri-gate bulk MOSFET design is beneficial for reduced variability.
机译:从历史上看,通过简单地缩放器件尺寸并以最小的方式对常规晶体管设计和CMOS工艺流程进行更改,即可将常规MOSFET(平面体)稳定地小型化,从而有效地持续改进了集成电路的性能和每项技术的每功能成本节点。但是,在100 nm以下的制程中,晶体管缩放变得越来越困难。漏电电流的增加和晶体管性能的可变性是继续扩展体硅CMOS技术的主要挑战。;使用统计3评估了使用间隔栅光刻工艺减轻栅线边缘粗糙度(LER)的好处。 D设备模拟。仿真结果表明,间隔栅光刻技术是一种可扩展的技术,可以显着降低LER引起的晶体管性能变化。提出了一种结合逆向沟道掺杂和多栅结构的三栅体MOSFET设计,以提供一种进化途径。批量CMOS缩放。研究了可伸缩性,设计优化以及系统和随机变化对晶体管性能的影响。与经典的平面MOSFET设计相比,三栅极体MOSFET具有出色的静电完整性和降低的可变性。与SOI FinFET设计相比,三栅极体MOSFET设计具有更高的可扩展性,并且对器件设计参数的敏感性更低。与体FinFET设计相比,三栅体MOSFET具有可比的性能和可变性。其低纵横比的通道结构有利于制造。因此,三栅极体MOSFET对于将CMOS规模缩小到技术路线图的末尾是很有希望的结构。讨论了三栅极体MOSFET的制造工艺流程和最关键的工艺。初始器件结果表明,三栅极体MOSFET设计有利于降低可变性。

著录项

  • 作者

    Sun, Xin.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 75 p.
  • 总页数 75
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号