首页> 外文学位 >Caveolin-1 recruitment to the trailing edge of motile cells results in focal adhesion disassembly and nascent interaction with actin stress fibers.
【24h】

Caveolin-1 recruitment to the trailing edge of motile cells results in focal adhesion disassembly and nascent interaction with actin stress fibers.

机译:Caveolin-1募集到运动细胞的后缘会导致粘着斑拆卸和与肌动蛋白应激纤维的新生相互作用。

获取原文
获取原文并翻译 | 示例

摘要

The protein caveolin-1 has been shown to positively affect angiogenesis and vascular remodeling in vivo via studies using knockout mice. In fact, defects in these two processes are among the major hallmarks of an otherwise benign caveolin-null phenotype. Current dogma on the function of caveolin-1 does not predict or account for these deficits. The overall objective of the following studies was to uncover the role of caveolin-1 in angiogenesis and vascular remodeling through study of the protein in cell-substratum remodeling during cell motility in vitro.; In the first study, caveolin-1 and its parent organelle, caveolae, conspicuously polarize to the rear of migrating human umbilical vein endothelial cells. Moreover, caveolin-1 localizated at the cell rear is mutually exclusive with focal adhesion staining and lamellipodial protrusion. Acute caveolin-1 knockdown by small, interfering RNA diminished the ability of endothelial cells to polarize and migrate toward a chemotactic stimulus.; In the second study, live cell imaging was used to study the dynamics between caveolin-1, focal adhesions, and the actin cytoskeleton. Caveolin-1 recruitment and transient association with focal adhesions at the trailing edge resulted in adhesion sliding and disassembly, concomitant with recoil of the trailing edge into the cell body proper. Moreover, association of caveolin-1 with actin stress fibers previously associated with adhesions in the collapsing trailing edge was observed. Mouse embryonic fibroblasts from caveolin-1 null mice demonstrated defects in trailing edge recoil compared to control cells with no decrease in cell contractility, suggesting a specific deficit in adhesion disassembly. Furthermore, caveolin-null cells displayed a decrease in overall chemokinetic motility and an increase in directional persistence, an indication that caveolin-1 contributes to movement plasticity via trailing edge focal adhesion disassembly.; In the final study, the interaction of polarized caveolin-1 with actin stress fibers at the cell rear was characterized. Caveolin-1 predictably associated with the cell perimeter depending on the direction of cell migration. Importantly, inhibition on non-muscle myosin by blebbistatin treatment abrogated initial polarization of caveolin-1, but did not affect caveolin-1 that had already polarized. Using live cell imaging in conjunction with photobleaching, actin-associated caveolin-1 was found to be extremely static upon polarization to the cell rear. In contrast, the initial polarization of caveolin-1 to retracting areas was highly dynamic. Furthermore, GM1 internalization at the cell rear was negligible, confirming that polarized caveolae are highly static. Forced disruption of the actin cytoskeleton by cytochalasin D treatment resulted in caveolin-1 depolarization and disaggregation into small puncta displaying frenetic, kiss-and-run movement. Furthermore, cytoskeletal remodeling in response to change in direction of a cell resulted in similar caveolin depolarization.; In summary, stress fibers associate with and exert traction on trailing edge focal adhesions during cell motility. This traction force is prerequisite for caveolin-1 recruitment. Arrival and transient association of caveolin-1 with focal adhesions results in adhesion disassembly and stable interaction of caveolin with actin stress fibers. Thus, a novel mechanism in cellular mechanotransduction can be described, whereby cells utilize caveolin-1 recruitment to relieve strain generated at the cell perimeter by the actin cytoskeleton during movement. This novel function of caveolin-1 may analogously occur in vivo, beyond the context of endothelial cell migration. The deficits in angiogenesis and vascular remodeling seen in caveolin-1 null mice might thus be explained by the role of caveolin-1 in cell-substratum remodeling in response to strain.
机译:通过使用基因敲除小鼠的研究,已经证明蛋白Caveolin-1可以在体内积极影响血管生成和血管重塑。实际上,这两个过程中的缺陷是否则为良性的小窝蛋白-空表型的主要特征。目前关于caveolin-1功能的教条不能预测或解释这些缺陷。以下研究的总体目标是通过研究蛋白质在体外细胞运动过程中在细胞基质重塑中发现小窝蛋白-1在血管生成和血管重塑中的作用。在第一个研究中,caveolin-1及其亲代细胞器caveolae明显偏向正在迁移的人脐静脉内皮细胞的后部。此外,位于细胞后部的caveolin-1与粘着斑染色和片状脂质体突起互斥。小分子干扰RNA导致的急性Caveolin-1抑制作用减弱了内皮细胞极化并向趋化刺激迁移的能力。在第二项研究中,活细胞成像用于研究小窝蛋白1,粘着斑和肌动蛋白细胞骨架之间的动力学。 Caveolin-1募集以及与后缘粘连的短暂关联导致粘连滑动和拆卸,并伴随着后缘反冲到细胞体内。此外,还观察到了caveolin-1与肌动蛋白应激纤维的结合,该肌动蛋白应激纤维先前与塌陷的后缘中的粘附有关。与对照细胞相比,来自caveolin-1 null小鼠的小鼠胚胎成纤维细胞在后缘后坐力方面表现出缺陷,而细胞的收缩力却没有降低,这表明粘附拆卸方面存在特定缺陷。此外,空洞蛋白空细胞表现出整体化学动力学运动的降低和方向持久性的增加,这表明空洞蛋白1通过后缘粘着粘连分解促进运动可塑性。在最终研究中,表征了极化的小窝蛋白1与细胞后部肌动蛋白应激纤维的相互作用。取决于细胞迁移的方向,Caveolin-1可预测地与细胞周长相关。重要的是,blebbistatin处理对非肌肉肌球蛋白的抑制作用消除了Caveolin-1的初始极化,但并未影响已经极化的Caveolin-1。将活细胞成像与光致漂白结合使用,发现肌动蛋白相关的小窝蛋白1在极化至细胞后部时非常静态。相反,小窝蛋白1到收缩区域的初始极化是高度动态的。此外,在细胞后部的GM1内在作用可以忽略不计,这证明极化的小孔是高度静态的。细胞松弛素D处理对肌动蛋白细胞骨架的强迫破坏导致小窝蛋白1去极化和分解成小点状,显示出疯狂的,亲吻和奔跑的运动。此外,响应于细胞方向变化的细胞骨架重塑导致相似的小室去极化。总之,在细胞运动期间,应力纤维与后缘粘连相关并对其施加牵引力。这种牵引力是募集Caveolin-1的先决条件。小窝蛋白1与粘着斑的到达和短暂缔合导致小窝蛋白与肌动蛋白应力纤维之间的粘连分解和稳定相互作用。因此,可以描述细胞机械转导的新机制,从而细胞利用小窝蛋白-1募集来减轻运动过程中肌动蛋白细胞骨架在细胞周围产生的应变。 Caveolin-1的这一新功能可能类似地在体内发生,超出了内皮细胞迁移的范围。因此,caveolin-1无效小鼠中见到的血管生成和血管重塑的缺陷可能是由caveolin-1在响应应变的细胞基质重塑中的作用所解释的。

著录项

  • 作者

    Beardsley, Andrew.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Biology Cell.; Biology Physiology.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学;
  • 关键词

  • 入库时间 2022-08-17 11:38:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号