首页> 外文学位 >Numerical modeling of hollow optical fiber drawing process.
【24h】

Numerical modeling of hollow optical fiber drawing process.

机译:中空光纤拉伸过程的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

The hollow optical fiber drawing process has been numerically investigated. Axisymmetric, laminar and conjugated flows of gas in the central cavity, glass and aiding purge gas, were simulated in the model. A numerical scheme was proposed to correct the inner and outer surfaces of the hollow fiber. The optically thick approximation, as well as the zonal model, was applied to calculate the radiative transport within glass. The validation of the model was carried out. It is shown that the results from the model are consistent with the physical trends and agree well with the results in the literature. The effects of variable properties of air and buoyancy were investigated and results indicated that these effects are neglectable for simulating the draw process. The effects of physical parameters, such as the temperature distribution on the furnace wall, the drawing speed, the preform feeding speed, geometry of the preform and material properties, on the thermal transport, the neck-down profiles, the final collapse ratio and draw tension have been studied. Then, an appropriate objective function, comprised of the maximum velocity lag, E' and NBOHCs defect concentrations and draw tension, has been proposed to describe the quality of the hollow fiber. The feasible domain for hollow optical fiber drawing process was identified for optimal design. A multi-variable and non-constrained optimal design problem in hollow optical fiber drawing process has been solved by the univariate search and curve fitting method. Finally, collapse of Microstructured Polymer Optical Fibers (MPOFs) during the drawing process was investigated by a porous media model. Results provided the effects of parameters on the final porosity of MPOFs. This model has been validated by comparing with the results for solid-core and hollow fibers drawing processes.
机译:对中空光纤拉丝工艺进行了数值研究。在模型中模拟了中心腔中气体,玻璃和辅助吹扫气体的轴对称,层流和共轭流。提出了一种数值方案来校正中空纤维的内表面和外表面。光学厚度近似值以及区域模型被用于计算玻璃内的辐射传输。进行了模型验证。结果表明,该模型的结果与物理趋势一致,并且与文献中的结果吻合良好。研究了空气和浮力的可变特性的影响,结果表明这些影响对于模拟拉伸过程可忽略不计。物理参数(例如炉壁上的温度分布,拉拔速度,预成型坯进料速度,预成型坯的几何形状和材料特性)对热传递,颈缩轮廓,最终塌缩比和拉伸的影响已经研究了张力。然后,提出了由最大速度滞后,E'和NBOHCs缺陷浓度和拉伸张力组成的适当目标函数,以描述中空纤维的质量。确定了中空光纤拉丝工艺的可行域,以进行最佳设计。通过单变量搜索和曲线拟合的方法解决了中空光纤拉丝过程中的多变量,无约束的最优设计问题。最后,通过多孔介质模型研究了拉制过程中微结构聚合物光纤(MPOF)的塌陷。结果提供了参数对MPOF最终孔隙率的影响。通过与实芯和中空纤维拉伸过程的结果进行比较,已经验证了该模型。

著录项

  • 作者

    Yang, Jing.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号