首页> 外文学位 >Computational modeling of Hall thruster channel wall erosion.
【24h】

Computational modeling of Hall thruster channel wall erosion.

机译:霍尔推进器通道壁腐蚀的计算模型。

获取原文
获取原文并翻译 | 示例

摘要

Hall thrusters, a type of space electric propulsion, offer high specific impulses attractive for a variety of space missions. As lifetime requirements desired for Hall thruster operations increase, there is a greater need to be able to predict and analyze the wear of the thruster over time. The main mechanism of Hall thruster failure is the erosion of the acceleration channel walls to the point where the magnetic circuit is exposed to the plasma flow. Experimental testing to determine the rate and extent of wall erosion is time consuming and expensive. Thus, capturing the erosion process through computational simulations is a useful means of predicting lifetime for design and analysis purposes.; Two models are employed to simulate the erosion process. The first is a hydrodynamic model that is used to describe the plasma flow within the thruster and to calculate the ion fluxes to the thruster channel walls. The second method is a molecular dynamics model that is used to calculate the sputter yields for the wall material based on the incoming ion fluxes. The results of these two methods are used together to simulate the erosion of the channel walls and their evolution over time.; Three test cases are analyzed. The hydrodynamic model is used to compare the differences between krypton and xenon propellants in the NASA-173Mv1 Hall thruster. The molecular dynamics model is used to calculate the sputter yields of hexagonal boron nitride due to low-energy xenon ions. Both methods are used to model the erosion of the channel walls of an SPT-100 Hall thruster over a 4000-hour life test. The computational results are compared to available experimental results for all three cases along with additional analysis.; This work represents the only known use of a fluid-based plasma model for Hall thruster erosion simulations. It also contains the only use of a molecular dynamics model without additional surface binding energy assumptions for boron nitride sputtering simulations. Results of boron nitride sputter yields for xenon ion energies below 100 eV are presented.
机译:霍尔推力器是一种空间电力推进器,可提供高比冲动力,对各种太空任务具有吸引力。随着霍尔推进器操作所需的使用寿命要求的增加,越来越需要能够预测和分析推进器随时间的磨损。霍尔推力器失效的主要机理是加速通道壁的腐蚀到磁路暴露于等离子流的程度。确定壁腐蚀速率和程度的实验测试既费时又昂贵。因此,通过计算仿真捕获腐蚀过程是预测寿命的有用方法,以用于设计和分析目的。使用两个模型来模拟侵蚀过程。第一个是流体动力学模型,用于描述推进器内的等离子体流并计算到推进器通道壁的离子通量。第二种方法是分子动力学模型,该模型用于根据传入的离子通量来计算壁材料的溅射产率。这两种方法的结果一起用于模拟通道壁的侵蚀及其随时间的演变。分析了三个测试用例。流体力学模型用于比较NASA-173Mv1霍尔推进器中k推进剂和氙推进剂之间的差异。分子动力学模型用于计算由于低能氙离子引起的六方氮化硼的溅射产率。两种方法都可以用来模拟SPT-100霍尔推力器在4000小时的寿命测试中通道壁的腐蚀。将计算结果与所有三种情况的可用实验结果进行比较,并进行附加分析。这项工作代表了基于流体的等离子体模型在霍尔推进器腐蚀模拟中的唯一已知用途。它还仅包含分子动力学模型的使用,而没有用于氮化硼溅射模拟的其他表面结合能假设。给出了氙离子能量低于100 eV的氮化硼溅射产率的结果。

著录项

  • 作者

    Yim, John Tamin.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

  • 入库时间 2022-08-17 11:38:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号