首页> 外文学位 >Computational investigations of molecular transport processes in nanotubular and nanocomposite materials.
【24h】

Computational investigations of molecular transport processes in nanotubular and nanocomposite materials.

机译:纳米管和纳米复合材料中分子传输过程的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

The unique physical properties of nanomaterials, attributed to the combined effects of their size, shape, and composition, have sparked significant interest in the field of nanotechnology. Fabrication of nanodevices using nanomaterials as building-blocks are underway to enable novel technological applications. A fundamental understanding on the structure-property relationships and the mechanism of synthesizing nanomaterials with tailored physical properties is critical for a rationale design of functional nanodevices. In this thesis, molecular simulations that employ a detailed atomistic description of the nanoscopic structures were used to understand the structure-transport property relationships in two novel classes of porous nanomaterials, namely, polymer/porous inorganic layered nanocomposite materials and single-walled metal oxide nanotubes, and provide predictions for the design of nanodevices using these nanomaterials.;We employed molecular dynamics to study transport of gas molecules (in particular He, H2, N2 and O2) through a polydimethylsiloxane/porous layered silicate (AMH-3) nanocomposite membrane material as a function of its composition. Gas separation performance of the nanocomposite was found to be substantially enhanced for H2/N2 and H2/O 2 compared to pure polymeric material due to the molecular sieving effect of AMU-3, suggesting the possibility of developing a new class of superior separation devices. We also developed force field parameters for layered aluminophosphates that are emerging as potential inorganic layers for construction of nanocomposite materials. We presented preliminary work on developing Transition State Approach-Monte Carlo simulation method for calculating gas transport properties of nanocomposite materials. We investigated in detail the diameter control phenomenon in single-walled metal oxide nanotubes using molecular dynamics simulations and demonstrated the existence of a thermodynamic 'handle' for tuning the nanotube diameters and derived a unique correlation between nanotube energy, composition, and diameter to precisely predict nanotube diameters. Finally, using a combination of molecular dynamics, Monte Carlo and sorption experiments, we investigated adsorption and diffusion properties of water in single-walled aluminosilicate nanotubes. We predicted high water fluxes in these nanotubes, due to short lengths, hydrophilic interior and near-bulk-water diffusivities. Overall, my research represents two examples of the progress in developing a predictive basis for the design and analysis of nanostructures for applications in separations, nanofluidics, and fuel cell technology.
机译:纳米材料的独特物理性质,归因于其尺寸,形状和组成的综合影响,已引起了对纳米技术领域的极大兴趣。使用纳米材料作为构件的纳米器件的制造正在进行中,以实现新颖的技术应用。对结构特性关系和具有定制物理特性的纳米材料的合成机理的基本理解对于功能纳米器件的基本设计至关重要。在本文中,采用了对纳米结构进行详细原子描述的分子模拟,以了解两类新型多孔纳米材料,即聚合物/多孔无机层状纳米复合材料和单壁金属氧化物纳米管中的结构-传输性质关系。我们利用分子动力学研究了气体分子(特别是He,H2,N2和O2)通过聚二甲基硅氧烷/多孔层状硅酸盐(AMH-3)纳米复合膜材料的传输作为其组成的函数。由于AMU-3的分子筛作用,与纯聚合物材料相比,发现纳米复合材料对H2 / N2和H2 / O 2的气体分离性能大大提高,这表明开发新型高级分离装置的可能性。我们还为层状铝磷酸盐开发了力场参数,该层正逐渐成为潜在的无机层,可用于构建纳米复合材料。我们介绍了开发过渡态方法-蒙特卡洛模拟方法以计算纳米复合材料的气体传输性质的初步工作。我们使用分子动力学模拟详细研究了单壁金属氧化物纳米管中的直径控制现象,并演示了用于调节纳米管直径的热力学“手柄”的存在,并得出了纳米管能量,组成和直径之间的独特关联以精确预测纳米管直径。最后,结合分子动力学,蒙特卡洛和吸附实验,我们研究了水在单壁硅铝酸盐纳米管中的吸附和扩散特性。由于长度短,内部亲水性和散装水扩散性大,我们预测了这些纳米管中的水通量较高。总的来说,我的研究代表了两个实例,这些实例为开发用于分离,纳米流体和燃料电池技术的纳米结构的设计和分析提供了预测基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号