首页> 外文学位 >A meshless method with enriched basis functions for singularity problems.
【24h】

A meshless method with enriched basis functions for singularity problems.

机译:具有奇异问题的具有丰富基函数的无网格方法。

获取原文
获取原文并翻译 | 示例

摘要

For the last several decades, the Finite Element Method (FEM) has been a powerful tool in solving challenging science and engineering problems, especially when solution domains have complex geometry. However the mesh refinements and construction of higher order interpolation fields were prominent difficulties in classical finite element analysis.;In order to alliveate the difficulties of classical finite element method, the meshless methods were introduced. Meshless methods appear in several different names such as Element Free Galerkin Method (EFGM), h-p cloud Method, Partition of Unity Finite Element Method (PUFEM), Generalized Finite Element Method (GFEM), and Extended Finite Element Method (XFEM). In this dissertation, we are concerned with enriched GFEM. Unlike classical finite element methods, these meshless methods use meshes minimally or not at all. This feature becomes powerful when it comes to model crack propagation, large deformation, etc because re-meshing is unnecessary.;A partition of unity is an essential component of GFEM. The partition of unity function employed in this dissertation, is unique in the following sense: First, the partition of unity functions are highly regular, whereas most GFEM in the literature use piecewise C0-partition of unity functions. The highly regular partition of unity functions with appropriate smooth local approximation functions enables us to have highly regular global basis functions. Second, if polynomial local approximation functions that satisfy the Kronecker delta property are chosen, the global basis functions become smooth piecewise polynomials, and hence numerical integrations become exact and imposing essential boundary conditions become simple. Third, the partition of unity shape functions designed to have at-top do not yield an ill-conditioned stiffness matrix. Furthermore, a partition of unity for a non-convex domain is introduced to deal with an elasticity problem on a cracked elastic medium.;The most powerful aspect of GFEM is the freedom to choose any desired local approximation functions. By choosing highly smooth local basis functions, it would be possible to solve high order PDEs such as biharmonic and polyharmonic partial differential equations without using Hermite finite elements that are extremely difficult to implement. Moreover, when a given problem has strong singularities, using various types of singular functions, the approximation space can be enriched to capture the singularities without regenerating the whole mesh or refining the meshes in the adaptive way.;In this dissertation, GFEM with enriched basis functions is used to solve elliptic boundary value problems containing singularities. In Chapter 2, our meshless method is applied to solve the Motz problem that has jump boundary data singularity. In Chapter 3, we use our method to get highly accurate stress analysis of cracked elastic domains. We demonstrate that the proposed approach yields highly accurate numerical solution of the Motz problem as well as accurate stress analysis of cracked elastic domains. We also will show that the meshless method, GFEM with enriched basis functions, yields the improved results, compared with performance of other existing methods. Finally, we introduce a new approach to estimate the stress intensity factor.
机译:在过去的几十年中,有限元方法(FEM)已成为解决具有挑战性的科学和工程问题的有力工具,尤其是在求解域具有复杂几何形状的情况下。然而,网格的细化和高阶插值场的构造是经典有限元分析中的主要困难。为了解决经典有限元方法的困难,引入了无网格方法。无网格方法以几种不同的名称出现,例如无元素Galerkin方法(EFGM),h-p云方法,统一划分有限元方法(PUFEM),广义有限元方法(GFEM)和扩展有限元方法(XFEM)。在本文中,我们关注丰富的GFEM。与经典的有限元方法不同,这些无网格方法很少或根本不使用网格。由于不必进行重新网格划分,因此在模型裂纹扩展,大变形等方面,此功能将变得非常强大。统一分区是GFEM的基本组成部分。本文在以下意义上采用的单位函数分区是唯一的:首先,单位函数的分区是高度规则的,而文献中的大多数GFEM都使用单位函数的分段C0分区。单位函数的高度规则划分以及适当的平滑局部逼近函数使我们能够拥有高度规则的全局基函数。其次,如果选择满足Kronecker delta属性的多项式局部逼近函数,则全局基函数变为平滑的分段多项式,因此数值积分变得精确,并且强加的基本边界条件变得简单。第三,设计成具有顶部的统一形状函数的分区不会产生病态的刚度矩阵。此外,引入了非凸域的单位分区,以处理破裂的弹性介质上的弹性问题。GFEM最强大的方面是可以自由选择任何所需的局部逼近函数。通过选择高度光滑的局部基函数,可以解决高阶PDE,例如双谐波和多谐波偏微分方程,而无需使用极难实现的Hermite有限元。此外,当给定问题具有很强的奇异性时,可以使用各种类型的奇异函数来丰富逼近空间,以捕获奇异性,而无需重新生成整个网格或以自适应方式细化网格。函数用于解决包含奇异性的椭圆边值问题。在第二章中,我们的无网格方法被用于解决具有跳跃边界数据奇异性的Motz问题。在第3章中,我们使用我们的方法对破裂的弹性域进行高精度的应力分析。我们证明,提出的方法产生了Motz问题的高精度数值解,以及裂纹弹性域的精确应力分析。我们还将证明,与其他现有方法相比,具有丰富基函数的无网格方法GFEM产生了改进的结果。最后,我们介绍了一种估算应力强度因子的新方法。

著录项

  • 作者

    Hong, Won-Tak.;

  • 作者单位

    The University of North Carolina at Charlotte.;

  • 授予单位 The University of North Carolina at Charlotte.;
  • 学科 Applied Mechanics.;Engineering Mechanical.;Mathematics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 88 p.
  • 总页数 88
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;数学;机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:38:31

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号