首页> 外文学位 >Perfect tracking for non-minimum phase systems with applications to biofuels from microalgae.
【24h】

Perfect tracking for non-minimum phase systems with applications to biofuels from microalgae.

机译:完美跟踪非最小相系统,并将其应用于微藻生物燃料。

获取原文
获取原文并翻译 | 示例

摘要

In a causal setting, a closed-loop control system receives reference inputs (with no a priori knowledge) that it must track. For this setting, controllers are designed that provide both stability and performance (e.g., to meet tracking and disturbance rejection requirements). Often, feedback controllers are designed to satisfy weighted optimization criteria (e.g., weighted tracking error) that are later validated using test signals such as step responses and frequency sweeps. Feedforward controllers may be used to improve the response to measurable external disturbances (e.g., reference inputs). In this way, they can improve the closed-loop response; however, these approaches do not directly specify the closed-loop response.;Two controller architectures are developed that allow for directly designing the nominal closed-loop response of non-minimum phase systems. These architectures classify both the signals that may be perfectly tracked by a non-minimum phase plant and the control signals that provide this perfect tracking. For these architectures, perfect tracking means that the feedback error is zero (for all time) in the nominal case (i.e., the plant model is exact) when there are no external disturbances. For the controllers presented here, parts of the feedforward controllers are based on the plant model, while a separate piece is designed to provide the desired level of performance. One of the potential limitations to these designs is that the actual performance will depend upon the quality of the model used. Robustness tools are developed that may be used to determine the expected performance for a given level of model uncertainty. These robustness tools may also be used to design the piece of the feedforward controller that provides performance. There is a tradeoff between model uncertainty and achievable performance. In general, more model uncertainty will result in less achievable performance.;Another way to approach the issue of performance is to consider that a good model must either be known a priori or learned via adaptation. In the cases where a good model is difficult to determine a priori, adaptation may be used to improve the models in the feedforward controllers, which will, in turn, improve the performance of the overall control system. We show how adaptive feedforward architectures can improve performance for systems where the model is of limited accuracy.;An example application of growing microalgae for biofuel production is presented. Microalgae have the potential to produce enough biofuels to meet the current US fuel demands; however, progress has been limited (in some part) due to a lack of appropriate models and controllers. In the work presented here, models are developed that may be used to monitor the productivity of microalgae inside a photobioreactor and to develop control algorithms. We use experimental data from a functional prototype photobioreactor to validate these models and to demonstrate the advantages of the advanced controller architectures developed here.
机译:在因果关系设置中,闭环控制系统接收必须跟踪的参考输入(没有先验知识)。对于此设置,控制器被设计为既提供稳定性又提供性能(例如,满足跟踪和干扰抑制要求)。通常,反馈控制器被设计为满足加权优化标准(例如,加权跟踪误差),该加权优化标准随后使用诸如阶跃响应和扫频的测试信号来验证。前馈控制器可用于改善对可测量的外部干扰(例如参考输入)的响应。这样,它们可以改善闭环响应。但是,这些方法并不能直接指定闭环响应。;开发了两种控制器体系结构,可以直接设计非最小相位系统的标称闭环响应。这些架构对非最小相位设备可以完美跟踪的信号以及提供这种完美跟踪的控制信号进行了分类。对于这些架构,完美的跟踪意味着在没有外部干扰的情况下(在正常情况下,即工厂模型是精确的)反馈误差为零(所有时间)。对于此处介绍的控制器,前馈控制器的某些部分基于工厂模型,而单独设计的部分则可提供所需的性能水平。这些设计的潜在限制之一是实际性能将取决于所用模型的质量。开发了鲁棒性工具,可用于确定给定级别的模型不确定性的预期性能。这些鲁棒性工具还可用于设计提供性能的前馈控制器。在模型不确定性和可实现的性能之间需要权衡。一般而言,更多的模型不确定性将导致无法实现的性能。解决性能问题的另一种方法是考虑必须先验先知或通过适应性学习好的模型。在难以确定先验好的模型的情况下,可以使用自适应来改进前馈控制器中的模型,这反过来将改善整个控制系统的性能。我们展示了自适应前馈体系结构如何提高模型精度有限的系统的性能。提出了生长微藻用于生物燃料生产的示例应用。微藻有潜力生产足够的生物燃料以满足当前美国的燃料需求;但是,由于缺乏适当的模型和控制器,进展受到了一定程度的限制。在本文介绍的工作中,开发了可用于监视光生物反应器内部微藻的生产率并开发控制算法的模型。我们使用来自功能性原型光生物反应器的实验数据来验证这些模型并证明此处开发的高级控制器架构的优势。

著录项

  • 作者

    Buehner, Michael R.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 281 p.
  • 总页数 281
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号