首页> 外文学位 >Making sure hungry plants get fed: The dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for efficient acclimation of Arabidopsis thaliana to nutritional phosphate deprivation.
【24h】

Making sure hungry plants get fed: The dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for efficient acclimation of Arabidopsis thaliana to nutritional phosphate deprivation.

机译:确保饥饿的植物饱食:双靶点紫色酸性磷酸酶同工酶AtPAP26对于拟南芥有效适应营养性磷缺乏至关重要。

获取原文
获取原文并翻译 | 示例

摘要

Acid phosphatases (APases; E.C. 3.1.3.2) catalyze the hydrolysis of phosphate (Pi) from Pi monoesters and anhydrides within the acidic pH range. Induction of intracellular and secreted purple acid phosphatases (PAPs) is a widespread plant response to nutritional Pi-deficiency. The probable function of intracellular APases is to recycle Pi from expendable intracellular organophosphate pools, whereas secreted APases likely scavenge Pi from the organically bound Pi that is prevalent in most soils. Although the catalytic function and regulation of plant PAPs have been described, their physiological function in plants has not been fully established. Recent biochemical and proteomic studies indicated that AtPAP26 is the predominant intracellular (vacuolar) and a major secreted purple APase isozyme upregulated by Pi-starved (-Pi) Arabidopsis thaliana. The in planta function of AtPAP26 was assessed by molecular, biochemical, and phenotypic characterization of a homozygous Salk T-DNA insertion mutant. Loss of AtPAP26 expression resulted in the elimination of AtPAP26 transcripts and 55-kDa immunoreactive AtPAP26 polypeptides, correlated with a 9- and 5-fold decrease in extractable shoot and root APase activity, respectively, as well as a 40% reduction in secreted APase activity of --Pi seedlings. The results corroborate previous findings implying that AtPAP26 is: (i) the principal contributor to Pi starvation inducible APase activity in Arabidopsis, and (ii) controlled post-transcriptionally mainly at the level of protein accumulation. Total shoot free Pi level was about 40% lower in --Pi atpap26 mutants relative to wild-type controls, but unaffected under Pi-sufficient conditions. Moreover, shoot, root, inflorescence, and silique development of the atpap26 mutant was impaired during Pi deprivation, but unaffected under Pi-replete conditions, or during nitrogen or potassium-limited growth, or oxidative stress. The results suggest that the hydrolysis of Pi from organic-phosphate esters by AtPAP26 makes an important contribution to Pi-recycling and scavenging in --Pi Arabidopsis.
机译:酸性磷酸酶(APases; E.C. 3.1.3.2)在酸性pH范围内催化Pi单酯和酸酐中的磷酸盐(Pi)水解。细胞内和分泌的紫色酸性磷酸酶(PAP)的诱导是植物对营养Pi缺乏的普遍反应。细胞内APase的可能功能是从消耗性细胞内有机磷库中回收Pi,而分泌的APase可能从大多数土壤中普遍存在的有机结合的Pi中清除Pi。尽管已经描述了植物PAP的催化功能和调节,但是它们在植物中的生理功能尚未完全确立。最近的生化和蛋白质组学研究表明,AtPAP26是主要的细胞内(真空)细胞,是Pi饥饿的拟南芥上调的主要分泌型紫色APase同工酶。 AtPAP26的植物体内功能通过纯合的Salk T-DNA插入突变体的分子,生化和表型表征进行评估。 AtPAP26表达的丧失导致AtPAP26转录本和55 kDa免疫反应性AtPAP26多肽的消除,分别与可提取的芽和根APase活性降低9倍和5倍,以及分泌的APase活性降低40% --Pi幼苗。结果证实了以前的发现,暗示AtPAP26是:(i)拟南芥中Pi饥饿诱导的APase活性的主要贡献者,和(ii)转录后主要在蛋白质积累水平上进行控制。相对于野生型对照,-Pi atpap26突变体的总无芽Pi含量低约40%,但在Pi充足的条件下不受影响。此外,在剥夺Pi的过程中atpap26突变体的芽,根,花序和长角果的发育受到损害,但在Pi充足的条件下,在氮或钾有限的生长或氧化胁迫下不受影响。结果表明,AtPAP26将Pi从有机磷酸酯中水解为--Pi拟南芥中Pi的再循环和清除做出了重要贡献。

著录项

  • 作者

    Hurley, Brenden A.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Biology Plant Physiology.
  • 学位 M.Sc.
  • 年度 2009
  • 页码 70 p.
  • 总页数 70
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号