首页> 外文学位 >Thermophysical, interfacial and decomposition analyses of polyhydroxyalkanoates introduced against organic and inorganic surfaces.
【24h】

Thermophysical, interfacial and decomposition analyses of polyhydroxyalkanoates introduced against organic and inorganic surfaces.

机译:针对有机和无机表面引入的聚羟基链烷酸酯的热物理,界面和分解分析。

获取原文
获取原文并翻译 | 示例

摘要

The development of a "cradle-to-cradle" mindset with both material performance during utilization and end of life disposal is a critical need for both ecological and economic considerations. The main limitation to the use of the biopolymers is their mechanical properties. Reinforcements are therefore a good alternative but disposal concerns then arise. Thus the objective of this dissertation is to investigate a biopolymer nanocomposite where the filler is a synthetically prepared layer double hydroxide (inorganic interface); and a biopolymer paper (organic interface) based coating or laminate. The underlying issues driving performance are the packing density of the biopolymer and the interaction with the reinforcement. Since the polyhydroxyalkanoates or PHAs (the biopolymers used for the manufacture of the nanocomposites and coatings) are semicrystalline materials, the glass transition was investigated using dynamic mechanical analysis (DMA) and dielectric spectroscopy (DES), whereas the melt crystallization, cold crystallization and melting points were investigated using differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) spectroscopy was used to estimate crystallinity in the coated material given the low thermal mass of the PHA in the PHA coating. The significant enhancement of the crystallization rate in the PHA nanocomposite was probed using DSC and polarized optical microscopy (POM) and analyzed using Avrami and Lauritzen-Hoffman models. Both composites showed a significant improvement in the mechanical performance obtained by DMA, tensile and impact testing. The degradation and decomposition of the two composites were investigated in low microbial activity soil for the cellulose paper (to slow down the degradation rate that occurs in compost) and in compost. An in-house system according to the American Society for Testing and Materials ASTM D-98 (2003) was engineered. Soil decomposition showed that PHA coating into and onto the cellulose paper can be considered to be a useful method for the assessment of the degradability of the biopolymer. PHA nanocomposite showed enhanced compostability.
机译:在生态利用和经济考虑方面,迫切需要发展一种“从摇篮到摇篮”的思维方式,在使用过程中具有材料性能,并且要报废使用寿命。使用生物聚合物的主要限制是它们的机械性能。因此,加强件是一个很好的选择,但随之而来的是处置问题。因此,本论文的目的是研究一种生物聚合物纳米复合材料,其中填料为合成制备的双层氢氧化物(无机界面)。以及基于生物聚合物纸(有机界面)的涂层或层压板。驱动性能的根本问题是生物聚合物的堆积密度以及与增强材料的相互作用。由于聚羟基链烷酸酯或PHA(用于制造纳米复合材料和涂层的生物聚合物)是半结晶材料,因此使用动态力学分析(DMA)和介电谱(DES)研究了玻璃化转变,而熔融结晶,冷结晶和熔融使用差示扫描量热法(DSC)研究这些点。考虑到PHA涂层中PHA的热质量低,傅里叶变换红外(FTIR)光谱用于估计涂层材料的结晶度。使用DSC和偏振光学显微镜(POM)探测了PHA纳米复合材料中结晶速率的显着提高,并使用Avrami和Lauritzen-Hoffman模型进行了分析。两种复合材料均显示出通过DMA,拉伸和冲击测试获得的机械性能的显着改善。在低微生物活性土壤中研究了两种复合材料在纤维素纸上的降解和分解(以减慢堆肥中发生的降解速度)和堆肥中的降解速度。根据美国测试和材料学会ASTM D-98(2003)设计的内部系统。土壤分解表明,将PHA涂覆到纤维素纸上和纤维素纸上可以认为是评估生物聚合物降解性的有用方法。 PHA纳米复合材料显示出增强的堆肥性。

著录项

  • 作者

    Dagnon, Koffi Leonard.;

  • 作者单位

    University of North Texas.;

  • 授予单位 University of North Texas.;
  • 学科 Engineering Environmental.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 259 p.
  • 总页数 259
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号