首页> 外文学位 >Evolution of Canadian Shield groundwaters and gases: Influence of deep permafrost.
【24h】

Evolution of Canadian Shield groundwaters and gases: Influence of deep permafrost.

机译:加拿大盾构地下水和气体的演变:多年冻土的影响。

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this research is to evaluate the impacts of thick permafrost (>300m) formation on groundwater chemical and flow system evolution in the crystalline rock environment over geologic timescales.;Field activities at the Lupin mine also provided an opportunity to study the nature of gases within crystalline rocks in a permafrost environment. Gases were generally methane-dominated (64 to 87), with methane delta 13C and delta2H values varying between -56 and -42‰ VPDB and -349 to -181‰ VSMOW, respectively. The gases sampled within the Lupin mine have unique ranges of chemical and isotopic compositions compared with other Canadian and Fennoscandian Shield gases. The gases may be of thermogenic origin, mixed with some bacteriogenic gas. The generally low delta 2H-CH4 ratios are somewhat problematic to this interpretation, but the geologic history of the site, a metaturbidite sequence, supports a thermogenic gas origin. The presence of gas hydrate in the rock surrounding Lupin was inferred, based on temperature measurements and hydrostatic pressures.;The effects of deep permafrost formation and dissipation during the Pleistocene glacial/interglacial cycle to deep groundwaters in the Canadian Shield were also investigated by compiling data from thirty-nine sites at twenty-four locations across the Canadian Shield. Impacts due to glacial meltwater recharge and surficial cryogenic concentration of fluids, which had been previously considered by others, and in situ freeze-out effects due to ice and/or methane hydrate formation were considered. At some Canadian Shield sites, there are indications that fresh, brackish, and saline groundwaters have been affected by one of these processes, but the data were not sufficient to differentiate between mixed, intruded glacial meltwaters, or residual waters resulting from either permafrost or methane hydrate formation. Physical and geochemical data do not support the cryogenic formation of Canadian Shield brines from seawater in glacial marginal troughs.;The origin and evolution of Canadian and Fennoscandian Shield brines was explored with a survey of chlorine and bromine stable isotope ratios. The delta37Cl and delta81Br isotopic ratios varied between -0.78‰ and 1.52‰ (SMOC) and 0.01‰ and 1.52‰ (SMOB), respectively. Variability of chlorine and bromine isotope ratios decreases with increasing depth. Fennoscandian Shield groundwaters tend to be more enriched than Canadian Shield groundwaters for both 37Cl and 81Br. Other sources and processes which may affect delta37Cl and delta81Br composition are also explored. Primary processes such as magmatic and/or hydrothermal activity are thought to be responsible for the isotopic composition of the most concentrated fluids at each site. (Abstract shortened by UMI.);A field investigation was conducted at the Lupin Mine in Nunavut, Canada, to characterize the physical and hydrogeochemical conditions within and beneath a thick permafrost layer. Taliks, or unfrozen channels within the permafrost, are found beneath large lakes in the field area, and provide potential hydraulic connections through the permafrost. Rock matrix waters are dilute and do not appear to affect groundwater salinity. Permafrost waters are N a-Cl and Na-Cl-SO 4 type, and have been contaminated with chloride and nitrate by mining activities. Sulfide oxidation in the permafrost may be naturally occurring or is enhanced by mining activities. Basal permafrost waters (550 to 570 mbgs) are variably affected by mining. The less contaminated basal waters have medium sulfate concentrations and are Ca-Na dominated. This is similar to deeper, uncontaminated subpermafrost waters, which are Ca-Na-Cl or Na-Ca-Cl type with a wide range of salinities (2.6 to 40 g·L-1). The lower salinity subpermafrost waters are attributed to dissociation of methane hydrate and drawdown of dilute talik waters by the hydraulic gradient created by mine de-watering. This investigation was unable to determine the influence of talik waters to the subpermafrost zone in undisturbed conditions. Pressures are also highly variable, and do not correlate with salinity. Fracture infillings are scarce and calcite delta18O and delta 13C values have a large range. Microthermometry indicates a large range in salinities and homogenization temperatures as well, indicative of a boiling system. In situ freezing of fluids and methane hydrate formation may have concentrated the remaining fluids.
机译:这项研究的目的是评估地质时标上厚层多年冻土(> 300m)的形成对结晶岩环境中地下水化学物质和流动系统演变的影响。卢平矿的野外活动也提供了研究自然界的机会。多年冻土环境中晶体岩石中的气体。气体通常以甲烷为主(64至87),甲烷δ13C和δ2 H值分别在VPDB -56至-42‰VPDB和-349至-181‰VSMOW之间变化。与其他加拿大和芬诺斯堪的亚盾构气体相比,在羽扇豆矿中采样的气体具有独特的化学和同位素组成范围。这些气体可能是热源,与某些细菌产生的气体混合在一起。通常较低的δ2H-CH4比率对于这种解释有些问题,但是该地点的地质历史(一种变浊岩层序)支持了成热气成因。根据温度测量值和静水压力推断出羽扇豆周围岩石中的天然气水合物的存在。通过收集数据,还研究了更新世冰川/间冰期循环中深层多年冻土形成和消散对深层地下水的影响。来自横跨加拿大盾的24个地点的39个地点。考虑了冰川融水的补给和流体表面低温浓度的影响(以前已被其他人考虑)以及冰和/或甲烷水合物形成引起的原位冻结效应。在某些加拿大盾构站点中,有迹象表明淡水,微咸水和含盐量的地下水已受到这些过程之一的影响,但数据不足以区分混合的,侵入的冰川融水或多年冻土或甲烷产生的残留水。水合物的形成。物理和地球化学数据不支持从冰川边缘槽中的海水中低温形成加拿大盾构盐水。;通过对氯和溴的稳定同位素比率进行调查,探讨了加拿大和芬诺斯堪的亚盾构盐水的起源和演变。 δ37Cl和δ81Br同位素比分别在-0.78‰和1.52‰(SMOC)和0.01‰和1.52‰(SMOB)之间变化。氯和溴同位素比率的变异性随深度的增加而降低。对于37Cl和81Br,Fennoscandian Shield地下水比加拿大Shield地下水更富集。还探讨了可能影响delta37Cl和delta81Br组成的其他来源和过程。诸如岩浆活动和/或热液活动的主要过程被认为是每个站点中最浓缩流体的同位素组成的原因。 (摘要由UMI缩短。);在加拿大努纳武特的卢平矿进行了野外调查,以表征厚层永久冻土层内部和下方的物理和水文地球化学条件。在田间区域的大湖下面发现了多年冻土中的塔利克斯或未冻结的河道,它们通过多年冻土层提供了潜在的水力连接。岩石基质水很稀,似乎不影响地下水盐度。多年冻土水为N a-Cl和Na-Cl-SO 4型,并因采矿活动而被氯化物和硝酸盐污染。永久冻土中的硫化物氧化可能是自然发生的,或者由于开采活动而增强。基础多年冻土水域(550至570 mbgs)受采矿的影响各有不同。受污染较少的基础水具有中等硫酸盐浓度,且以Ca-Na为主。这类似于较深的,未被污染的多年冻土水,它们是Ca-Na-Cl或Na-Ca-Cl类型的盐,其盐度范围很广(2.6至40 g·L-1)。盐度较低的多年冻土水可归因于甲烷水合物的分解和矿井脱水产生的水力梯度而导致的稀滑石质水的流失。这项调查无法确定在不受干扰的条件下,滑石粉水对多年冻土带的影响。压力也是高度可变的,并且与盐度无关。裂缝填充物稀少,方解石的δ18O和δ13C值范围较大。显微温度计也表明盐度和均质温度范围很大,表明存在沸腾系统。流体的原位冻结和甲烷水合物的形成可能浓缩了剩余的流体。

著录项

  • 作者

    Stotler, Randy L.;

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Hydrology.;Geochemistry.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 283 p.
  • 总页数 283
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号