首页> 外文学位 >Engineering particle morphology and assembly for proton conducting fuel cell membrane applications.
【24h】

Engineering particle morphology and assembly for proton conducting fuel cell membrane applications.

机译:用于质子传导燃料电池膜应用的工程颗粒形态和组装。

获取原文
获取原文并翻译 | 示例

摘要

The development of high performance ion conducting membranes is crucial to the commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs). This thesis work addresses some of the issues for improving the performance of ion conducting membranes in PEMFCs and SOFCs through engineering membrane microstructures. Electric-field directed particle assembly shows promise as a route to control the structure of polymer composite membranes in PEMFCs. The application of electric fields results in the aggregation of proton conducting particles into particle chains spanning the thickness of composite membranes. The field-induced structure provides improved proton conductivity, selectivity for protons over methanol, and mechanical stability compared to membranes processed without electric field.;Hydrothermal deposition is developed as a route to grow electrolyte crystals into membranes (material is hydroxyapatite) with aligned proton conductive pathways that significantly enhance proton transport by eliminating grain boundary resistance. By varying deposition parameters such as reactant concentration, reaction time, or adding crystal growth modifiers, dense hydroxyapatite electrolyte membranes with a range of thickness are produced. The microstructurally engineered hydroxyapatite membranes are promising electrolyte candidates for intermediate temperature fuel cells. The microstructural engineering of ceramics by hydrothermal deposition can potentially be applied to create other ion conducting materials with optimized transport properties.;To understand how to control the crystal growth habit by adding growth modifiers, growth of unusual calcite rods was investigated in a microemulsion-based synthesis prior to the investigation of hydrothermal deposition of hydroxyapatite membranes. The microemulsions act as crystal growth modifier to mediate crystal nucleation and subsequent growth. The small microemulsion droplets confine nucleation sites and the surfactants of microemulsions adsorb onto a specific face of growing crystals, which causes crystals to grow in anisotropic shapes. The as-obtained elongated shape of the calcite crystals facilitates assembly into hierarchical structures under electric fields, and can allow the crystals to be used as templates for fabricating advanced materials such as composite calcite/titania (core/shell) rods and titania tubes by removing the calcite core off with dilute hydrochloric acid.
机译:高性能离子导电膜的开发对于聚合物电解质膜燃料电池(PEMFC)和固体氧化物燃料电池(SOFC)的商业化至关重要。本文的工作解决了通过工程膜微结构改善PEMFC和SOFC中离子导电膜性能的一些问题。电场引导的颗粒组装显示出有望作为控制PEMFC中聚合物复合膜结构的途径。电场的施加导致质子传导性粒子聚集成跨越复合膜厚度的粒子链。与没有电场处理的膜相比,场致结构提供了改善的质子传导性,质子对甲醇的选择性以及机械稳定性。;开发了水热沉积,将电解质晶体生长成具有对齐的质子导电性的膜(材料是羟基磷灰石)通过消除晶界阻力显着增强质子传输的途径。通过改变沉积参数,例如反应物浓度,反应时间,或添加晶体生长改性剂,可生产出厚度范围广泛的致密羟基磷灰石电解质膜。微观结构设计的羟基磷灰石膜是用于中温燃料电池的有希望的电解质候选物。通过水热沉积进行的陶瓷微结构工程可潜在地用于创建具有优化传输性能的其他离子导电材料。;为了了解如何通过添加生长调节剂来控制晶体的生长习性,在微乳液基中研究了不寻常的方解石棒的生长在研究水热沉积羟基磷灰石膜之前进行合成。微乳液用作晶体生长改性剂,以介导晶体成核和随后的生长。小的微乳液液滴限制了成核位置,微乳液的表面活性剂吸附到正在生长的晶体的特定面上,这导致晶体以各向异性的形状生长。如此获得的细长方解石晶体形状有利于在电场下组装成分层结构,并且可以允许该晶体用作制造高级材料(例如,方解石/二氧化钛(核/壳)复合棒和二氧化钛管)的模板。用稀盐酸除去方解石芯。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号