首页> 外文学位 >A multi-fidelity analysis selection method using a constrained discrete optimization formulation.
【24h】

A multi-fidelity analysis selection method using a constrained discrete optimization formulation.

机译:使用约束离散优化公式的多保真度分析选择方法。

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this research is to develop a method for selecting the fidelity of contributing analyses in computer simulations. Model uncertainty is a significant component of result validity, yet it is neglected in most conceptual design studies. When it is considered, it is done so in only a limited fashion, and therefore brings the validity of selections made based on these results into question. Neglecting model uncertainty can potentially cause costly redesigns of concepts later in the design process or can even cause program cancellation. Rather than neglecting it, if one were to instead not only realize the model uncertainty in tools being used but also use this information to select the tools for a contributing analysis, studies could be conducted more efficiently and trust in results could be quantified. Methods for performing this are generally not rigorous or traceable, and in many cases the improvement and additional time spent performing enhanced calculations are washed out by less accurate calculations performed downstream. The intent of this research is to resolve this issue by providing a method which will minimize the amount of time spent conducting computer simulations while meeting accuracy and concept resolution requirements for results.;In many conceptual design programs, only limited data is available for quantifying model uncertainty. Because of this data sparsity, traditional probabilistic means for quantifying uncertainty should be reconsidered. This research proposes to instead quantify model uncertainty using an evidence theory formulation (also referred to as Dempster-Shafer theory) in lieu of the traditional probabilistic approach. Specific weaknesses in using evidence theory for quantifying model uncertainty are identified and addressed for the purposes of the Fidelity Selection Problem. A series of experiments was conducted to address these weaknesses using n-dimensional optimization test functions. These experiments found that model uncertainty present in analyses with 4 or fewer input variables could be effectively quantified using a strategic distribution creation method; if more than 4 input variables exist, a Frontier Finding Particle Swarm Optimization should instead be used.;Once model uncertainty in contributing analysis code choices has been quantified, a selection method is required to determine which of these choices should be used in simulations. Because much of the selection done for engineering problems is driven by the physics of the problem, these are poor candidate problems for testing the true fitness of a candidate selection method. Specifically moderate and high dimensional problems' variability can often be reduced to only a few dimensions and scalability often cannot be easily addressed. For these reasons a simple academic function was created for the uncertainty quantification, and a canonical form of the Fidelity Selection Problem (FSP) was created. Fifteen best- and worst-case scenarios were identified in an effort to challenge the candidate selection methods both with respect to the characteristics of the tradeoff between time cost and model uncertainty and with respect to the stringency of the constraints and problem dimensionality. The results from this experiment show that a Genetic Algorithm (GA) was able to consistently find the correct answer, but under certain circumstances, a discrete form of Particle Swarm Optimization (PSO) was able to find the correct answer more quickly. To better illustrate how the uncertainty quantification and discrete optimization might be conducted for a "real world" problem, an illustrative example was conducted using gas turbine engines.
机译:这项研究的目的是开发一种在计算机模拟中选择影响分析的保真度的方法。模型不确定性是结果有效性的重要组成部分,但在大多数概念设计研究中却被忽略。当考虑它时,它仅以有限的方式进行,因此使基于这些结果进行的选择的有效性受到质疑。忽略模型不确定性可能会导致在设计过程中后期对概念进行昂贵的重新设计,甚至可能导致程序取消。与其忽略它,不如不只是意识到所用工具的模型不确定性,而且要利用这一信息选择有助于分析的工具,可以更有效地进行研究并量化结果。执行此操作的方法通常不严格也不可追溯,并且在许多情况下,执行增强计算所带来的改进和额外时间会被下游执行的较不准确的计算所淘汰。本研究的目的是通过提供一种方法来解决此问题,该方法将在满足结果的准确性和概念分辨率要求的同时,将花在进行计算机模拟上的时间减至最少。在许多概念设计程序中,只有有限的数据可用于量化模型不确定。由于数据稀疏,因此应重新考虑用于量化不确定性的传统概率方法。这项研究建议改为使用证据理论公式(也称为Dempster-Shafer理论)代替传统的概率方法来量化模型不确定性。出于保真度选择问题的目的,已确定并解决了使用证据理论对模型不确定性进行量化的特定弱点。使用n维优化测试功能进行了一系列实验来解决这些弱点。这些实验发现,使用策略分布创建方法可以有效地量化具有4个或更少输入变量的分析中存在的模型不确定性。如果存在四个以上的输入变量,则应改用“前沿发现粒子群优化”。一旦量化了分析代码选择中的模型不确定性,就需要一种选择方法来确定在仿真中应使用这些选择中的哪个。由于针对工程问题所做的许多选择都是由问题的物理性质决定的,因此对于测试候选选择方法的真实适用性而言,这些是较差的候选问题。特别是中度和高维问题的可变性通常可以减少到只有几个维,而可伸缩性通常很难解决。由于这些原因,创建了用于不确定性量化的简单学术功能,并创建了保真度选择问题(FSP)的规范形式。在时间成本和模型不确定性之间权衡的特征以及约束的严格性和问题维度方面,确定了15种最佳和最差情况,以挑战候选选择方法。该实验的结果表明,遗传算法(GA)能够始终如一地找到正确的答案,但是在某些情况下,离散形式的粒子群优化(PSO)能够更快地找到正确的答案。为了更好地说明如何针对“现实世界”问题进行不确定性量化和离散优化,使用燃气涡轮发动机进行了说明性示例。

著录项

  • 作者

    Stults, Ian C.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Aerospace.;Operations Research.;Engineering Industrial.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 337 p.
  • 总页数 337
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号