首页> 外文学位 >Finite element modeling and optimization of high-speed aerothermoelastic systems.
【24h】

Finite element modeling and optimization of high-speed aerothermoelastic systems.

机译:高速气动热弹性系统的有限元建模和优化。

获取原文
获取原文并翻译 | 示例

摘要

The design of supersonic and hypersonic aerospace vehicles is by nature a multi-disciplinary problem requiring the close integration of compressible fluid dynamics, heat transfer, and structural dynamics. The transient flow around the body must be accurately characterized in order to assess its affect on the thermal and structural responses; conversely, the thermal and structural behavior may significantly alter the aerodynamic performance. The core of this dissertation effort is concerned with the development and demonstration of an analysis and design capability for the aerothermoelastic behavior of high-speed aerospace vehicles. This nominally involves coupling of the compressible Navier-Stokes equations for the fluid dynamics, the transient heat equation for the thermal response, and the elastodynamic equations for the structural dynamics. The streamline upwind Petrov-Galerkin (SUPG) stabilized finite element method is used for solving the compressible flow problem. Both a standard Galerkin and stabilized Galerkin gradient least squares (GGLS) finite element method are utilized for solving the heat equation, and a standard Galerkin method is used for solving the elastodynamic equations. The transient and steady-state responses of a problem are determined via a single, simultaneously coupled nonlinear system, thus bypassing accuracy and stability issues of classical staggered multi-physics coupling strategies. A gradient-based optimization framework is developed for designing transient coupled aerothermoelastic systems via adjoint-based sensitivity analysis. This framework is used to optimize the design of a structure in regard to thermal and structural performance. The efforts of this thesis have yielded a state-of-the-art approach for coupled aerothermoelastic analysis and design optimization.
机译:超音速和高超音速航空航天器的设计本质上是一个多学科的问题,需要紧密结合可压缩流体动力学,传热和结构动力学。必须准确表征围绕人体的瞬态流动,以评估其对热和结构响应的影响;相反,热和结构行为可能会大大改变空气动力学性能。本文工作的核心是关于高速航空航天器气动弹性行为分析和设计能力的开发和演示。从名义上讲,这涉及用于流体动力学的可压缩Navier-Stokes方程,用于热响应的瞬态热方程和用于结构动力学的弹性动力学方程的耦合。流线顺风彼得罗夫-加勒金(SUPG)稳定有限元方法用于解决可压缩流动问题。标准Galerkin方法和稳定Galerkin梯度最小二乘(GGLS)有限元方法都用于求解热方程,而标准Galerkin方法则用于求解弹性力学方程。问题的瞬态和稳态响应是通过单个同时耦合的非线性系统确定的,因此绕过了经典交错多物理场耦合策略的准确性和稳定性问题。开发了基于梯度的优化框架,用于通过基于伴随的灵敏度分析来设计瞬态耦合气动弹性系统。该框架用于优化有关热和结构性能的结构设计。本文的工作为结合气动热弹性分析和设计优化提供了一种最新方法。

著录项

  • 作者

    Howard, Micah A.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 287 p.
  • 总页数 287
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号