首页> 外文学位 >A Molecular Simulation Study of Antibody-Antigen Interactions on Surfaces for the Rational Design of Next-Generation Antibody Microarrays
【24h】

A Molecular Simulation Study of Antibody-Antigen Interactions on Surfaces for the Rational Design of Next-Generation Antibody Microarrays

机译:抗体-抗原在表面上相互作用的分子模拟研究,用于下一代抗体微阵列的合理设计

获取原文
获取原文并翻译 | 示例

摘要

Antibody microarrays constitute a next-generation sensing platform that has the potential to revolutionize the way that molecular detection is conducted in many scientific fields. Unfortunately, current technologies have not found mainstream use because of reliability problems that undermine trust in their results. Although several factors are involved, it is believed that undesirable protein interactions with the array surface are a fundamental source of problems where little detail about the molecular-level biophysics are known. A better understanding of antibody stability and antibody-antigen binding on the array surface is needed to improve microarray technology. Despite the availability of many laboratory methods for studying protein stability and binding, these methods either do not work when the protein is attached to a surface or they do not provide the atomistic structural information that is needed to better understand protein behavior on the surface. As a result, molecular simulation has emerged as the primary method for studying proteins on surfaces because it can provide metrics and views of atomistic structures and molecular motion. Using an advanced, coarse-grain, protein-surface model this study investigated how antibodies react to and function on different types of surfaces. Three topics were addressed: (1) the stability of individual antibodies on surfaces, (2) antibody binding to small antigens while on a surface, and (3) antibody binding to large antigens while on a surface. The results indicate that immobilizing antibodies or antibody fragments in an upright orientation on a hydrophilic surface can provide the molecules with thermal stability similar to their native aqueous stability, enhance antigen binding strength, and minimize the entropic cost of binding. Furthermore, the results indicate that it is more difficult for large antigens to approach the surface than small antigens, that multiple binding sites can aid antigen binding, and that antigen flexiblity simultaneously helps and hinders the binding process as it approaches the surface. The results provide hope that next-generation microarrays and other devices decorated with proteins can be improved through rational design.
机译:抗体微阵列构成了下一代传感平台,它有可能改变许多科学领域中进行分子检测的方式。不幸的是,由于可靠性问题破坏了人们对其结果的信任,当前的技术尚未在主流中得到使用。尽管涉及多个因素,但据信与阵列表面的不良蛋白质相互作用是问题的基本根源,而有关分子水平生物物理学的细节很少。需要对阵列表面的抗体稳定性和抗体-抗原结合有更好的了解,以改善微阵列技术。尽管有许多用于研究蛋白质稳定性和结合力的实验室方法可供使用,但是当蛋白质附着在表面上时这些方法不起作用,或者它们没有提供更好地了解表面蛋白质行为所需的原子结构信息。结果,分子模拟已成为研究表面蛋白质的主要方法,因为它可以提供原子结构和分子运动的度量和视图。本研究使用高级的粗粒蛋白质表面模型,研究了抗体如何对不同类型的表面起反应并在不同类型的表面上起作用。解决了三个问题:(1)表面上单个抗体的稳定性;(2)表面上的抗体与小抗原结合,以及(3)表面上的抗体与大抗原结合。结果表明,以垂直方向将抗体或抗体片段固定在亲水表面上可以为分子提供类似于其天然水稳定性的热稳定性,增强抗原结合强度,并使结合的熵减至最小。此外,结果表明,大抗原比小抗原更难以接近表面,多个结合位点可以帮助抗原结合,并且抗原的柔韧性同时帮助和阻碍了接近表面时的结合过程。结果提供了希望,通过合理的设计,可以改善下一代微阵列和其他装饰有蛋白质的设备。

著录项

  • 作者

    Bush, Derek B.;

  • 作者单位

    Brigham Young University.;

  • 授予单位 Brigham Young University.;
  • 学科 Chemical engineering.;Molecular biology.;Molecular physics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号