首页> 外文学位 >Predicting the Formation Pathways and Morphologies of Oxygenated Carbonaceous Nanoparticle Precursors in Premixed Flames
【24h】

Predicting the Formation Pathways and Morphologies of Oxygenated Carbonaceous Nanoparticle Precursors in Premixed Flames

机译:预测预混火焰中含氧碳纳米颗粒前体的形成途径和形貌

获取原文
获取原文并翻译 | 示例

摘要

Organic nanoparticles are an inevitable by-product of combustion phenomena that have deleterious health and environmental effects. They are carcinogenic because they damage biological cells due to their small size and their presence in the atmosphere contributes to global warming. We would be better able to effectively manage the harmful effects of these nanoparticles if we better understood their formation mechanisms and chemical compositions at an atomic level. The complexities of the reaction chemistry involved along with the difficulties of experimental techniques to capture the atomic level details of nanoparticles and their chemical precursor molecules during flame synthesis, has led to a gap in the understanding of their formation pathways and molecular structures. This work presents a novel chemical kinetic reaction scheme and utilizes a computational approach to model laboratory-scale flames in order to elucidate the compositions and morphologies of organic nanoparticle precursors. Organic nanoparticles formed during combustion have long been assumed to comprise only hydrogen and carbon atoms, however, recent work has noted the presence of oxygen atoms. Using the first model to account for oxygenation of aromatic precursors, this work demonstrates that oxygen chemistry is key to understanding the formation pathways and morphologies of nanoparticles and their chemical precursors. Kinetic oxygenation pathways capture the influence of alcohol-doped-fuel on particle formation in premixed flames by identifying the fuel's effect on precursor growth.;Stochastic simulations reveal an abundance of previously unconsidered oxygenated aromatic species to be present in premixed aromatic- and aliphatic-fuel flames. Key morphologies of oxygenated precursor species predicted by the model were confirmed in experiments, including a significant presence of furanic compounds. Similarly, simulations led to experiments that confirmed model predictions that large oxygenated aromatic molecules are important participants in particle formation. The model developed in this work demonstrates for the first time that inclusion of oxygenation pathways is necessary and vital in order to represent the chemical kinetic growth of nanoparticle precursors in premixed flames. The recognition of the previously unexpected importance of oxygenated aromatic precursors and their influence on nanoparticle formation in flames constitutes a notable advancement in the field of combustion-generated nanoparticle chemistry. The impact of the present findings are considerable to the efforts to investigate combustion generated particle formation with the aim to reduce their deleterious health and environmental effects.
机译:有机纳米颗粒是不可避免的燃烧现象的副产品,燃烧现象对健康和环境均造成有害影响。它们之所以具有致癌性,是因为它们由于尺寸小而损害生物细胞,并且它们在大气中的存在会导致全球变暖。如果我们更好地了解它们在原子水平上的形成机理和化学组成,我们将能够更好地有效管理这些纳米颗粒的有害影响。反应化学的复杂性以及在火焰合成过程中难以捕获纳米颗粒及其化学前体分子的原子级细节的实验技术的困难,导致在对其形成途径和分子结构的理解上出现了空白。这项工作提出了一种新颖的化学动力学反应方案,并利用一种计算方法来模拟实验室规模的火焰,以阐明有机纳米颗粒前体的组成和形态。长期以来一直认为在燃烧过程中形成的有机纳米颗粒仅包含氢和碳原子,但是,最近的工作表明存在氧原子。使用第一个模型来解释芳香族前体的氧化,这项工作表明,氧化学是了解纳米颗粒及其化学前体的形成途径和形态的关键。运动氧合途径通过确定燃料对前驱物生长的影响来捕获酒精掺杂燃料对预混火焰中颗粒形成的影响。随机模拟显示,预混芳族和脂族燃料中存在大量以前未考虑的含氧芳族物质。火焰。该模型预测的含氧前体物质的关键形态在实验中得到了证实,其中包括大量存在的呋喃化合物。类似地,模拟导致了实验,这些实验证实了模型预测,即大的含氧芳香分子是颗粒形成的重要参与者。在这项工作中开发的模型首次证明,为了代表预混火焰中纳米颗粒前体的化学动力学生长,包括氧化途径是必要且至关重要的。认识到氧化芳族前体的先前未曾预料到的重要性及其对火焰中纳米颗粒形成的影响,构成了燃烧产生的纳米颗粒化学领域的显着进步。本发现的影响对于研究燃烧产生的颗粒形成以减少其有害的健康和环境影响的努力是相当大的。

著录项

  • 作者

    Dillstrom, Vernon Tyler.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号