首页> 外文学位 >Additive Manufacturing and Characterization of Next Generation Sensors
【24h】

Additive Manufacturing and Characterization of Next Generation Sensors

机译:下一代传感器的增材制造和表征

获取原文
获取原文并翻译 | 示例

摘要

Nanoparticle based additive printing, also called Microscale Additive Manufacturing (MAM), has emerged as a versatile technique where nanoparticles are deposited on a substrate and sintered to create films of functional materials for different applications. This method allows the fabrication of electronic devices and other systems on arbitrary surfaces with an excellent control over the film microstructure, opens up material choices for fabrication, and creates less waste; thus, overcoming several shortcomings of conventional manufacturing methods such as lithography. Amongst the different MAM techniques, Aerosol Jet (AJ) based additive method can create feature sizes down to 10 ?m and can print nanoparticles dispersed in solvents having a viscosity as high as 1000 cP. This allows AJ method to print any material in the nanoparticle form at microscale and opens up the possibility of fabrication of miniature devices at high spatial densities. While the applicability of emerging AJ technique can bring many benefits, understanding the behavior of printed films at room temperature (RT) and at high temperatures (HT) is critical to their usage in various applications. This dissertation focuses on fundamental characterization of films fabricated by additive printing and exploring their novel applications as sensors operating at RT and HT.;Sensor fabrication was performed using an AJ-based additive printing method where several novel printing approaches were explored. Four different materials, namely, silver (Ag), nickel (Ni), nickel-chromium (NiCr) alloy, and carbon nanotubes (CNTs) were evaluated as sensor films. The sensor films were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). We correlated the film microstructure with the sensor electrical and mechanical behavior at different temperatures (24--500 °C) and frequencies (0.02--300 kHz). This knowledge was used to fabricate and characterize several high-performance sensor devices such as highly sensitive touch sensors, customizable biosensors, and high gauge factor HT strain sensors. We also demonstrated 3-D metal-dielectric structures that can be used for antenna applications. The work carried out in this dissertation adds to our knowledge of additive manufacturing and opens up the possibility of realizing low-cost high-performance sensor devices using environmentally benign fabrication techniques.
机译:基于纳米粒子的增材印刷,也称为微型增材制造(MAM),已成为一种通用技术,将纳米粒子沉积在基材上并进行烧结,以形成用于不同应用的功能材料薄膜。这种方法允许在任意表面上制造电子设备和其他系统,并且可以很好地控制薄膜的微观结构,从而为制造提供了材料选择,并减少了浪费。因此,克服了诸如光刻的常规制造方法的几个缺点。在不同的MAM技术中,基于Aerosol Jet(AJ)的加成方法可以创建低至10 µm的特征尺寸,并且可以打印分散在粘度高达1000 cP的溶剂中的纳米颗粒。这使得AJ方法可以在纳米尺度上印刷纳米颗粒形式的任何材料,并开辟了以高空间密度制造微型器件的可能性。虽然新兴的AJ技术的适用性可以带来很多好处,但了解印刷薄膜在室温(RT)和高温(HT)的行为对于它们在各种应用中的使用至关重要。本论文着重研究了通过增材印刷技术制备的薄膜的基本特性,并探索了其在室温和高温下作为传感器应用的新应用。传感器的制造采用基于AJ的增材印刷方法,探讨了几种新颖的印刷方法。评价了四种不同的材料,即银(Ag),镍(Ni),镍铬(NiCr)合金和碳纳米管(CNT)作为传感器膜。使用扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线衍射(XRD)和X射线光电子能谱(XPS)对传感器膜进行表征。我们将膜的微观结构与传感器在不同温度(24--500°C)和频率(0.02--300 kHz)下的电气和机械行为相关联。这些知识被用来制造和表征几种高性能的传感器设备,例如高灵敏度的触摸传感器,可定制的生物传感器和高规格因子HT应变传感器。我们还演示了可用于天线应用的3-D金属介电结构。本文所进行的工作增加了我们对增材制造的了解,并开辟了使用环境友好的制造技术实现低成本高性能传感器设备的可能性。

著录项

  • 作者

    Rahman, Md Taibur.;

  • 作者单位

    Washington State University.;

  • 授予单位 Washington State University.;
  • 学科 Engineering.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号