首页> 外文学位 >Study of composite thin films for applications in high density data storage.
【24h】

Study of composite thin films for applications in high density data storage.

机译:用于高密度数据存储的复合薄膜的研究。

获取原文
获取原文并翻译 | 示例

摘要

Granular Co-alloy + oxide thin films are currently used as the magnetic recording layer of perpendicular media in hard disk drives. The microstructure of these films is composed mainly of fine (7--10 nm) magnetic grains physically surrounded by oxide phases, which produce magnetic isolation of the grains. As a result, the magnetic switching volume is maintained as small as the physical grain size. Consequently, ample number of magnetic switching units can be obtained in one recording bit, in other words, higher signal to noise ratios (SNR) can be achieved. Therefore, a good understanding and control of the microstructure of the films is very important for high areal density magnetic recording media.;Interlayers and seedlayers play important roles in controlling the microstructure in terms of grain size, grain size distribution, oxide segregation and orientation dispersion of the crystallographic texture. Developing novel interlayers or seedlayers with smaller grain size is a key approach to produce smaller grain size in the recording layer. This study focuses on how to achieve smaller grain sizes in the recording layer through novel interlayer/seedlayer materials and processes. It also discusses the resulting microstructure in smaller-grain-size thin films.;Metal + oxide (e.g. Ru + SiO2) composite thin films were chosen as interlayer and seedlayer materials due to their unique segregated microstructure. Such layers can be grown epitaxially on top of fcc metal seedlayers with good orientation. It can also provide an epitaxial growth template for the subsequent magnetic layer (recording layer). The metal and oxide phases in the composite thin films are immiscible. The final microstructure of the interlayer depends on factors, such as, sputtering pressure, oxide species, oxide volume fraction, thickness, alloy composition, temperature etc. Moreover, it has been found that the microstructure of the composite thin films is affected mostly by two important factors---oxide volume fraction and sputtering pressure. The latter affects grain size and grain segregation through surface-diffusion modification and the self-shadowing effect. The composite Ru + oxide interlayers were found to have various microstructures under various sputtering conditions. Four characteristic microstructure zones can be identified as a function of oxide volume fraction and sputtering pressure---"percolated"(A), "maze"(T), "granular"(B) and "embedded" (C), based on which, a new structural zone model (SZM) is established for composite thin films. The granular microstructure of zone B is of particular interest for recording media application.;The grain size of interlayers is a strong function of pressure, oxide species and oxide volume fraction. Magnetic layers grown on top of these interlayers were found to be significantly affected by the interlayer microstructure. One-to-one grain epitaxial growth is very difficult to achieve when the grain size is too small. As a result, the magnetic properties of smaller grain size magnetic layers deteriorate due to poor growth. This presents a huge challenge to high areal density magnetic recording media.;A novel approach of Ar-ion etched Ru seedlayer, which can improve epitaxy between interlayer and magnetic layer is proposed. This method produces interlayer thin films of: (1) smaller grain size and higher nucleation density due to both a rougher seedlayer surface and an oxide addition in the interlayer; (2) good (00.2) texture due to the growth on top of the low pressure deposited Ru seedlayer; (3) dome-shape grain morphology due to the high pressure deposition. Therefore, a significant Ru grain size reduction with enhanced granular morphology and improved grain-to-grain epitaxy with the magnetic layer was achieved.;High resolution transmission electron microscopy (TEM) techniques, such as, electron energy loss spectroscopy (EELS), energy-filtered TEM (EFTEM), energy-dispersive X-ray spectroscopy (EDS) and mapping, and high angle annular dark field (HAADF) imaging have been utilized to investigate elemental distribution and grain morphology in composite magnetic thin films of different grain sizes. An oxygen-rich grain shell of about 0.5 ∼ 1 nm thickness is often observed for most media with different grain sizes. Reducing the grain size increases surface to volume ratio. With more surface area, smaller grains are more vulnerable to oxidization, resulting in even greater influence of the oxide on the magnetic properties of the grains.
机译:颗粒状共合金+氧化物薄膜目前被用作硬盘驱动器中垂直介质的磁记录层。这些薄膜的微观结构主要由被氧化物相物理包围的细小(7--10 nm)磁性颗粒组成,这些磁性颗粒使颗粒发生磁隔离。结果,将磁性开关量保持为与物理晶粒尺寸一样小。因此,可以在一个记录位中获得足够数量的磁性开关单元,换言之,可以实现更高的信噪比(SNR)。因此,对薄膜的微观结构的良好理解和控制对于高面密度的磁记录介质非常重要。中间层和籽晶层在控制微观结构方面起着重要作用,包括晶粒尺寸,晶粒尺寸分布,氧化物偏析和取向分散晶体结构。开发具有较小晶粒尺寸的新型中间层或籽晶层是在记录层中产生较小晶粒尺寸的关键方法。这项研究的重点是如何通过新颖的中间层/种子层材料和工艺在记录层中实现较小的晶粒尺寸。还讨论了在较小晶粒尺寸的薄膜中产生的微观结构。由于金属+氧化物(例如Ru + SiO2)复合薄膜具有独特的隔离微观结构,因此被选作中间层和种子层材料。这样的层可以外延生长在具有良好取向的fcc金属籽晶层上。它还可以为随后的磁性层(记录层)提供外延生长模板。复合薄膜中的金属和氧化物相是不溶混的。中间层的最终微观结构取决于诸如溅射压力,氧化物种类,氧化物体积分数,厚度,合金组成,温度等因素。此外,已经发现复合薄膜的微观结构主要受两个因素的影响。重要因素-氧化物体积分数和溅射压力。后者通过表面扩散改性和自阴影效应影响晶粒尺寸和晶粒偏析。发现该复合Ru +氧化物中间层在各种溅射条件下具有各种微观结构。可以根据氧化物体积分数和溅射压力确定四个特征性的微观结构区域-“渗透”(A),“迷宫”(T),“颗粒”(B)和“嵌入”(C),基于为复合薄膜建立了新的结构区模型(SZM)。区域B的颗粒状微观结构特别适合记录介质的应用。中间层的晶粒尺寸是压力,氧化物种类和氧化物体积分数的强大函数。发现在这些中间层的顶部上生长的磁性层受到中间层微结构的显着影响。当晶粒尺寸太小时,很难实现一对一的晶粒外延生长。结果,由于生长不良,较小晶粒尺寸的磁性层的磁性降低。这对高面密度的磁记录介质提出了巨大的挑战。提出了一种新型的Ar离子刻蚀Ru种子层的方法,该方法可以改善层间和磁性层之间的外延。该方法产生的层间薄膜为:(1)由于种子层表面更粗糙并且在层间添加了氧化物,晶粒尺寸更小,成核密度更高。 (2)由于在低压沉积的Ru种子层顶部生长,因此具有良好的(00.2)织构; (3)由于高压沉积而形成的圆顶状晶粒形态。因此,实现了显着的Ru晶粒尺寸减小,具有增强的颗粒形态和磁性层的改进的晶粒至晶粒外延。;高分辨率透射电子显微镜(TEM)技术,例如电子能量损失谱(EELS),能量滤波TEM(EFTEM),能量色散X射线光谱(EDS)和作图以及高角度环形暗场(HAADF)成像已被用于研究不同晶粒尺寸的复合磁性薄膜中的元素分布和晶粒形态。对于大多数具有不同晶粒尺寸的介质,通常会观察到约0.5到1 nm厚的富氧晶粒壳。减小晶粒尺寸可增加表面体积比。具有更大的表面积,较小的晶粒更容易被氧化,从而导致氧化物对晶粒的磁性能的影响更大。

著录项

  • 作者

    Yuan, Hua.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Physics Electricity and Magnetism.;Engineering Materials Science.;Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 239 p.
  • 总页数 239
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 电磁学、电动力学;冶金工业;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:38:09

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号