首页> 外文学位 >Analysis of V(D)J recombination in NHEJ-defective human cells & a structure:function analysis of mammalian Ku86.
【24h】

Analysis of V(D)J recombination in NHEJ-defective human cells & a structure:function analysis of mammalian Ku86.

机译:NHEJ缺陷人类细胞中V(D)J重组的分析和哺乳动物Ku86的结构:功能分析。

获取原文
获取原文并翻译 | 示例

摘要

V(D)J recombination is a site-specific DNA recombination process required for the assembly of immunoglobulin (Ig) and T cell receptor (TCR) genes, which is accomplished through the use of DNA double strand breaks (Bassing et al., 2002). The resulting hairpinned coding ends and the signal ends are rejoined primarily by the canonical non-homologous end joining (C-NHEJ) pathway which consists of at least seven factors: DNA-PKcs, Ku70, Ku86, Artemis, LigIV, XLF, XRCC4 (Rooney et al., 2004). Deficiency of any these NHEJ factors leads to a phenotype of 'Severe Combined Immune Deficiency' (SCID), which is characterized by a profound immune dysfunction resulting from aberrant V(D)J recombination (Bassing et al., 2002; Rooney et al., 2004; Zha et al., 2007). The accompanying blockage in B and T cell development, increased ionizing radiation sensitivity, and developmental defects can all be explained by the absence of the C-NHEJ pathway (Bassing et al., 2002; Rooney et al., 2004; Zha et al., 2007).;Using rAAV-mediated gene targeting (Kohli et al., 2004), our laboratory has generated loss-of-function mutations for all of the genes involved in NHEJ with the exception of Artemis and XRCC4 (in press or manuscripts in preparation). We have characterized these human cell lines that are either heterozygously or homozygously defective for one of the NHEJ factors, to assess the role of each factor in V(D)J recombination with three episomal substrates; pGG49 (signal joint), pGG51 (coding joint) and pGG52 (inversion construct). We have found that there is a dramatic defect in the frequency of V(D)J recombination in all null cell lines with all three substrates. However, there is variation in the recombination frequency and the sequences utilized at joints depending on which substrate and which cell line is used. This implies a different role for each of the NHEJ factors in signal, coding or hybrid joint formation in V(D)J recombination. We also observed similar recombination efficiency and sequence variation patterns at the joint junction in wild type and all heterozygous cell lines suggesting that residual NHEJ activity is enough for V(D)J recombination. This contrasts with the role of these same genes in generalized DNA double-strand break (DSB) repair for which a haploinsufficiency is often observed (Fattah et al., 2008b; Ruis et al., 2008).;In chapter 2, we pursued the idea suggested by our work in chapter 1 that C-NHEJ factors may have different functions in different pathways. To this end, we investigated a "separation-of-function" series of mutations for Ku86. For example, the Ku heterodimer not only recognizes the broken ends of DNA at V(D)J recombination-mediated DSBs and promotes their reassembly but also protects telomeres from undergoing fusions. How Ku performs these seemingly opposite functions on different, but structurally similar, substrates is unknown. As a precedent for the successful application of this experimental approach, however, separation-of-function mutations for Ku have been identified in yeast Ku (Bertuch and Lundblad, 2003; Palmbos et al., 2005; Ribes-Zamora et al., 2007; Roy et al., 2004; Stellwagen et al., 2003).;Previously, several Ku86 mutant cell lines (sxi-1-4) derived from Golden Syrian hamster V79-4 cells were isolated by forward and molecular genetic screens (He et al., 1996b; Zdzienicka, 1995). All of these cell lines shared common features including elevated sensitivity to radiation, defective DNA DSB repair, and aberrant V(D)J recombination. By functionally complementing these mutant cell lines with wild-type Ku86 cDNAs, it was determined that the absence of Ku86 caused these aberrant phenotypes (Errami et al., 1996; Smider et al., 1994).;Here, we used the Ku86-defective sxi-3 cell line to determine if "separation-of-function" of Ku86 in terms of DNA DSB repair, recombination and telomere maintenance is conserved in mammalian cells. We introduced six point mutations associated with defective telomere maintenance into the hamster Ku86 cDNA. These cDNAs were then stably introduced into sxi-3 cells and various DNA repair and V(D)J recombination assays were used to interrogate the lines. Domain-specific functions of Ku86 were unveiled by these experiments.;In summary, we have used mutant human cell lines and mutant cDNAs to elaborate the role of C-NHEJ factors---in general and Ku86 specifically---in a plethora of DNA metabolic reactions. Our results have improved our understanding of C-NHEJ reactions in humans.
机译:V(D)J重组是组装免疫球蛋白(Ig)和T细胞受体(TCR)基因所需的特定于位点的DNA重组过程,可通过使用DNA双链断裂来实现(Bassing等,2002 )。产生的发夹式编码端和信号端主要通过规范的非同源端连接(C-NHEJ)途径重新连接,该途径至少包含七个因素:DNA-PKcs,Ku70,Ku86,Artemis,LigIV,XLF,XRCC4( Rooney等,2004)。任何这些NHEJ因子的缺乏都会导致``严重联合免疫缺陷''(SCID)的表型,其特征是异常的V(D)J重组导致严重的免疫功能障碍(Bassing等,2002; Rooney等,2002)。 ,2004; Zha等,2007)。 B和T细胞发育中伴随的阻滞,电离辐射敏感性的提高和发育缺陷都可以通过缺少C-NHEJ途径来解释(Bassing等,2002; Rooney等,2004; Zha等。 (2007年);使用rAAV介导的基因靶向(Kohli等人,2004年),我们的实验室已为NHEJ中涉及的所有基因产生了功能丧失突变,Artemis和XRCC4除外(印刷中或手稿中)在准备)。我们已经表征了这些人细胞系对于NHEJ因子之一是杂合或纯合缺陷的,以评估每种因子在V(D)J与三种附加型底物重组中的作用; pGG49(信号接头),pGG51(编码接头)和pGG52(反演构建体)。我们已经发现,在具有所有三种底物的所有无效细胞系中,V(D)J重组的频率存在显着缺陷。但是,根据使用哪种底物和哪种细胞系,重组频率和在接头处使用的序列会有所不同。这暗示着NHEJ因子在V(D)J重组中的信号,编码或混合接头形成中的作用各不相同。我们还观察到了相似的重组效率和野生型和所有杂合细胞系的关节连接处的序列变异模式,表明残留的NHEJ活性足以进行V(D)J重组。这与这些相同基因在普遍观察到单倍机能不全的广义DNA双链断裂(DSB)修复中的作用形成对比(Fattah等人,2008b; Ruis等人,2008).;在第二章中,我们进行了研究我们在第1章中的工作提出了C-NHEJ因子在不同途径中可能具有不同功能的想法。为此,我们研究了Ku86的“功能分离”系列突变。例如,Ku异二聚体不仅可以识别V(D)J重组介导的DSB处的DNA断裂末端,并促进其重组,还可以保护端粒免于融合。 Ku如何在不同但结构相似的基材上执行这些看似相反的功能尚不清楚。然而,作为成功应用该实验方法的先例,已在酵母Ku中鉴定出Ku的功能分离突变(Bertuch和Lundblad,2003; Palmbos等,2005; Ribes-Zamora等,2007)。 ; Roy等人,2004; Stellwagen等人,2003)。;以前,通过正向和分子遗传筛选(He(基因)方法)分离了几种来自金叙利亚仓鼠V79-4细胞的Ku86突变细胞系(sxi-1-4)。等人,1996b; Zdzienicka,1995)。所有这些细胞系都具有共同的特征,包括对辐射的敏感性提高,DNA DSB修复缺陷和V(D)J异常重组。通过在功能上用野生型Ku86 cDNA补充这些突变细胞系,可以确定Ku86的缺失会导致这些异常表型(Errami等,1996; Smider等,1994)。在这里,我们使用了Ku86-有缺陷的sxi-3细胞系,以确定在哺乳动物细胞中,是否在DNA DSB修复,重组和端粒维持方面保持Ku86的“功能分离”。我们在仓鼠Ku86 cDNA中引入了与缺陷端粒维持相关的六个点突变。然后将这些cDNA稳定地引入sxi-3细胞,并使用各种DNA修复和V(D)J重组测定法对这些品系进行询问。这些实验揭示了Ku86的域特定功能。总而言之,我们使用突变的人类细胞系和突变的cDNA来详细阐述C-NHEJ因子(通常是Ku86)在许多动物中的作用。 DNA代谢反应。我们的结果提高了我们对人类C-NHEJ反应的理解。

著录项

  • 作者

    Kweon, Junghun.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Biology Molecular.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;
  • 关键词

  • 入库时间 2022-08-17 11:38:08

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号