首页> 外文学位 >Genetic engineering of microalgae for improved biomass production at large scales: proof of concept studies for advanced harvesting and pest-management strategies.
【24h】

Genetic engineering of microalgae for improved biomass production at large scales: proof of concept studies for advanced harvesting and pest-management strategies.

机译:微藻的遗传工程可大规模改善生物量的生产:先进收获和有害生物管理策略的概念研究。

获取原文
获取原文并翻译 | 示例

摘要

By midcentury it is estimated that food production must nearly double in order to meet global requirements and it remains unclear if this level of production will be possible due to limiting land, fresh-water, energy and nutrient resources; all-the-while, the deleterious impacts of climate change and first generation biofuel production threaten to make the situation even more perilous. Many experts agree that meeting these looming agricultural crises will require a complete overhaul of the current agricultural system. Yields on existing lands must increase but novel saline and wastewater tolerant crops, such as microalgae, will also be needed to meet production demands. Microalgae offer a particularly tantalizing solution but major cultivation and processing problems must first be overcome before their potential can be realized.;Harvesting microalgae at large scales is a significant barrier to economically feasible production of biofuels and other low-cost commodities from microalgal biomass. In chapter 2 of this dissertation, I demonstrate a strategy for reducing the costs of harvesting microalgae by generating transgenic strains of Chlamydomonas reinhardtii that express a heterologous cellular adhesion molecule (Algal-CAM) from the multicellular green alga Volvox carteri. Constitutive expression of heterologous Algal-CAM causes Chlamydomonas unicells to adhere together such that they settle out of suspension much more rapidly than controls.;Immunoblotting shows the heterologous Algal-CAM to be present in the extracellular matrix of Chlamydomonas transformants and apparently cross-linked with native glycoproteins there. We define this form of cell adhesion as genetically engineered (GE) flocculation to distinguish it from other flocculation strategies. Future development of this trait will include making expression of Algal-CAM inducible for controlled timing of GE flocculation and exploring regulated expression of additional cell adhesion molecules from the many other multicellular relatives of Chlamydomonas. Advanced forms of this technology could lead to production of novel biomaterials from single-celled algae by controlled expression of diverse cell adhesion molecules with different cross-linking properties.;The only problem affecting large-scale algaculture that is potentially more significant than harvesting is contamination control. Just as weeds can drastically reduce yields in traditional agricultural systems, so too can aquatic pests, fungi, bacteria and competing algae act to limit production from commercial algaculture operations. Terrestrial agriculture has largely turned to new genetically modified crops that are resistant to common herbicides in order to manage weeds and boost yields while reducing management costs. This transgenic approach to weed control has proven successful and could potentially be applied to algaculture for the control of contamination in large algal ponds or photobioreactors. In chapter 3, I outline a specific strategy to implement contamination control in algal growth systems by generating transgenic algae that possess greater resistance to hydrogen peroxide, a powerful broad-spectrum biocide, by heterologous expression of a yeast cytosolic catalase enzyme (CTT1). I then describe and demonstrate the technical aspects of generating these transgenic algae. Algae transformed with a CTT1 expression vector show significantly greater capacity to break down hydrogen peroxide to oxygen and water than do controls. Moreover, in-vivo catalase enzyme kinetic studies suggest that an additional catalase enzyme is functional in positively transformed lines when compared to transgenic control cell lines that were not transformed with the CTT1 gene. Catalase enzyme kinetics also show that positive transformant lines can break down hydrogen peroxide with greater efficiency and capacity than a control line (engineered cells demonstrate greater Vmax and decreased Km values). The enhanced ability of engineered cells to break down hydrogen peroxide may result in greater resistance to exogenously applied peroxide as an aquatic biocide. Further studies must now be done to demonstrate physiological responses of control and positive transgenic cell lines and verify if cytosolic catalase expression can enhance cell viability after exposure to otherwise lethal doses of hydrogen peroxide.
机译:估计到本世纪中叶,粮食生产必须增加近一倍才能满足全球需求,由于土地,淡水,能源和养分资源的限制,这种生产水平是否有可能尚不清楚;同时,气候变化和第一代生物燃料生产的有害影响使局势更加危险。许多专家认为,要应对这些迫在眉睫的农业危机,就需要对当前的农业系统进行彻底的改革。现有土地的单产必须增加,但还需要新型耐盐和耐废水的农作物(例如微藻)来满足生产需求。微藻提供了特别诱人的解决方案,但是必须首先克服主要的种植和加工问题,然后才能发挥其潜力。大规模收获微藻是从微藻生物质经济可行地生产生物燃料和其他低成本商品的重大障碍。在本论文的第2章中,我演示了一种通过产生来自多细胞绿藻Volvox Carteri的表达异源细胞粘附分子(Algal-CAM)的莱茵衣藻转基因菌株来降低微藻收获成本的策略。异源Algal-CAM的组成型表达导致衣藻衣原体单细胞粘附在一起,从而使其比悬浮液更快地从悬浮液中沉降出来;免疫印迹表明异源Algal-CAM存在于衣藻衣原体转化子的细胞外基质中,并且显然与之交联。那里有天然糖蛋白。我们将这种细胞粘附形式定义为基因工程(GE)絮凝,以区别于其他絮凝策略。该特性的未来发展将包括使Algal-CAM的表达可诱导以控制GE絮凝的时间,并探索衣藻许多其他多细胞亲戚的其他细胞粘附分子的调控表达。这项技术的先进形式可能通过控制表达具有不同交联特性的不同细胞粘附分子来从单细胞藻类生产新型生物材料。影响大规模藻类养殖的唯一问题是污染,而污染可能比收获更重要控制。正如杂草会大大降低传统农业系统的产量一样,水生害虫,真菌,细菌和竞争性藻类也可能会限制商业藻类生产的产量。陆上农业已在很大程度上转向对普通除草剂具有抗性的新型转基因作物,以管理杂草并提高产量,同时降低管理成本。这种控制杂草的转基因方法已被证明是成功的,并有可能应用于藻类养殖,以控制大型藻类池塘或光生物反应器中的污染。在第3章中,我概述了通过在酵母胞质过氧化氢酶(CTT1)的异源表达中产生对过氧化氢(一种强大的广谱杀生物剂)具有更大抵抗力的转基因藻类,来在藻类生长系统中实施污染控制的具体策略。然后,我将描述并演示生成这些转基因藻类的技术方面。与对照相比,用CTT1表达载体转化的藻类显示出将过氧化氢分解为氧气和水的能力。此外,体内过氧化氢酶的动力学研究表明,与未用CTT1基因转化的转基因对照细胞系相比,另一种过氧化氢酶在正转化细胞系中具有功能。过氧化氢酶的动力学还表明,与对照系相比,阳性转化株能以更高的效率和容量分解过氧化氢(工程细胞显示出更大的Vmax和降低的Km值)。工程细胞分解过氧化氢的能力增强可能导致对作为水生杀生物剂的外源施加的过氧化物具有更大的抵抗力。现在必须进行进一步的研究,以证明对照和阳性转基因细胞系的生理反应,并验证胞质过氧化氢酶的表达在暴露于致命剂量的过氧化氢后是否能增强细胞活力。

著录项

  • 作者

    Lowder, Levi G.;

  • 作者单位

    University of Wyoming.;

  • 授予单位 University of Wyoming.;
  • 学科 Molecular biology.;Agricultural engineering.;Cellular biology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号