首页> 外文学位 >Electro-opto-fluidics: Nanopore-gated devices for multimodal analysis of single biomolecules.
【24h】

Electro-opto-fluidics: Nanopore-gated devices for multimodal analysis of single biomolecules.

机译:电光流体:用于单个生物分子多峰分析的纳米孔门控设备。

获取原文
获取原文并翻译 | 示例

摘要

Biological and solid-state nanopore sensors have proven their capability of high-throughput electrical single molecule sensing and potential in DNA/RNA sequencing. On the other hand, optofluidics, the combination of integrated optics and microfluidics, has drawn extensive attention over the past decade. The combination of nanopore technology and optofluidics is bound to bring impressive features and superiority. In this work, we innovatively integrated the solid-state nanopore into an optofluidic device, anti-resonant reflecting optical waveguides (ARROWs), to form an electro-opto-fluidic sensing platform, and demonstrate for the first time correlated electro-optical detection of single biological nanoparticles.;In order to successfully fabricate the solid-state nanopore in the semiconductor based ARROWs, we developed different fabrication methods, which are either based on standard semiconductor processes, or require the help of a focused ion beam milling. Solid-state nanopores fabricated with these methods were thoroughly characterized, analyzed, and compared using cross section analysis, energy dispersive X-ray analysis, and finite element simulation. We demonstrated that the fabrication dependent geometric shape of the pore determines the electrical blockade signal.;Afterwards, our nanopore-optofluidic device was used for the correlated electro-optical detection of single synthesized nanoparticles, single viruses, and single DNA molecules. The nanopore functions as a smart gate for sequential introduction of single nanoparticles for optical analysis. We proved that the electrical signals and the optical signals of individual nanoparticles can be clearly detected and cross correlated with a fidelity of up to 100%. On top of that, the electrical signal and the optical signal were used together to distinguish and identify different particles which could not be differentiated using either one of the signals. Moreover, information about the flow velocity, the particle-nanopore interaction, and the particle's fine structure could be extracted by analyzing electrical and optical signals. Furthermore, the combined analysis of optical signal intensity distribution and the simulated particle locations in the flow assisted us to find out the optical mode location.;Both the results and the theoretical analysis show that our novel electro-opto-fluidic platform is promising for further scientific research and clinical applications.
机译:生物和固态纳米孔传感器已证明其具有高通量电单分子传感能力,并具有DNA / RNA测序的潜力。另一方面,在过去的十年中,集成了光学和微流体技术的光流体技术引起了广泛的关注。纳米孔技术和光流体技术的结合必将带来令人印象深刻的功能和优越性。在这项工作中,我们创新地将固态纳米孔集成到了光流器件,抗共振反射光波导(ARROWs)中,形成了一个电光传感平台,并首次展示了相关的电光检测为了成功地在基于半导体的箭头中制造固态纳米孔,我们开发了不同的制造方法,这些方法要么基于标准的半导体工艺,要么需要聚焦离子束铣削的帮助。使用横截面分析,能量色散X射线分析和有限元模拟,对用这些方法制造的固态纳米孔进行了彻底的表征,分析和比较。我们证明了取决于孔的制造几何形状决定了电封锁信号。随后,我们的纳米孔-光流体装置被用于单个合成的纳米粒子,单个病毒和单个DNA分子的相关电光检测。纳米孔充当智能门,用于依次引入单个纳米颗粒进行光学分析。我们证明,单个纳米粒子的电信号和光信号可以清晰地检测到并与高达100%的保真度相互关联。最重要的是,将电信号和光信号一起使用,以区分和识别不同的粒子,这些粒子无法使用任一信号进行区分。此外,可以通过分析电信号和光信号来提取有关流速,粒子与纳米孔的相互作用以及粒子的精细结构的信息。此外,对光信号强度分布和流中模拟粒子位置的结合分析有助于我们找出光模位置。结果和理论分析均表明,我们新型的电光平台有希望进一步发展科学研究和临床应用。

著录项

  • 作者

    Liu, Shuo.;

  • 作者单位

    University of California, Santa Cruz.;

  • 授予单位 University of California, Santa Cruz.;
  • 学科 Electrical engineering.;Nanotechnology.;Optics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号