首页> 外文学位 >Preparation of Supported Metal Catalysts by Atomic and Molecular Layer Deposition for Improved Catalytic Performance.
【24h】

Preparation of Supported Metal Catalysts by Atomic and Molecular Layer Deposition for Improved Catalytic Performance.

机译:通过原子和分子层沉积制备负载型金属催化剂,以提高催化性能。

获取原文
获取原文并翻译 | 示例

摘要

Creating catalysts with enhanced selectivity and activity requires precise control over particle shape, composition, and size. Here we report the use of atomic layer deposition (ALD) to synthesize supported Ni, Pt, and Ni-Pt catalysts in the size regime (< 3 nm) where nanoscale properties can have a dramatic effect on reaction activity and selectivity.;This thesis presents the first ALD synthesis of non-noble metal nanoparticles by depositing Ni on Al2O3 with two half-reactions of Ni(Cp)2 and H2. By changing the number of ALD cycles, Ni weight loadings were varied from 4.7 wt% to 16.7 wt% and the average particle sizes ranged from 2.5 to 3.3 nm, which increased the selectivity for C 3H6 hydrogenolysis by an order of magnitude over a much larger Ni/Al2O3 catalyst. Pt particles were deposited by varying the number of ALD cycles and the reaction chemistry (H2 or O 2) to control the particle size from approximately 1 to 2 nm, which allowed lower-coordinated surface atoms to populate the particle surface. These Pt ALD catalysts demonstrated some of the highest oxidative dehydrogenation of propane selectivities (37%) of a Pt catalyst synthesized by a scalable technique.;Dry reforming of methane (DRM) is a reaction of interest due to the recent increased recovery of natural gas, but this reaction is hindered from industrial implementation because the Ni catalysts are plagued by deactivation from sintering and coking. This work utilized Ni ALD and NiPt ALD catalysts for the DRM reaction. These catalysts did not form destructive carbon whiskers and had enhanced reaction rates due to increased bimetallic interaction. To further limit sintering, the Ni and NiPt ALD catalysts were coated with a porous alumina matrix by molecular layer deposition (MLD). The catalysts were evaluated for DRM at 973 K, and the MLD-coated Ni catalysts outperformed the uncoated Ni catalysts in either activity (with 5 MLD cycles) or stability (with 10 MLD cycles).;In summary, this thesis developed a new Ni nanoparticle ALD chemistry, explored possibilities for changing Pt ALD particle size, brought the two techniques together to create enhanced bimetallic catalysts, and stabilized the catalysts using MLD.
机译:制造具有增强的选择性和活性的催化剂需要精确控制颗粒的形状,组成和尺寸。本文我们报道了使用原子层沉积(ALD)来合成尺寸范围(<3 nm)的负载型Ni,Pt和Ni-Pt催化剂,其中纳米级性能可以对反应活性和选择性产生显着影响。提出了通过在Ni(Cp)2和H2的两个半反应下将Al沉积在Al2O3上来首次非贵金属纳米颗粒的ALD合成。通过改变ALD循环次数,Ni的负载量从4.7 wt%更改为16.7 wt%,平均粒径从2.5到3.3 nm不等,这大大提高了C 3H6氢解的选择性。 Ni / Al2O3催化剂。通过改变ALD循环次数和反应化学物质(H2或O 2)来沉积Pt颗粒,以将颗粒尺寸控制在大约1到2 nm,这允许较低配位的表面原子填充颗粒表面。这些Pt ALD催化剂证明了通过可扩展技术合成的Pt催化剂的丙烷选择性最高的氧化脱氢率(37%)。但是,由于镍催化剂受到烧结和焦化失活的困扰,因此该反应受到工业实施的阻碍。这项工作利用Ni ALD和NiPt ALD催化剂进行DRM反应。这些催化剂没有形成破坏性的碳须,并且由于双金属相互作用的增加而具有提高的反应速率。为了进一步限制烧结,Ni和NiPt ALD催化剂通过分子层沉积(MLD)涂覆了多孔氧化铝基体。评估了催化剂在973 K时的DRM,在活性(具有5个MLD循环)或稳定性(具有10个MLD循环)方面,MLD包覆的Ni催化剂的性能均优于未包覆的Ni催化剂。纳米颗粒ALD化学方法,探索了改变Pt ALD颗粒大小的可能性,将这两种技术结合在一起以创建增强型双金属催化剂,并使用MLD稳定了催化剂。

著录项

  • 作者

    Gould, Troy D.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Chemical.;Engineering Materials Science.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号