首页> 外文学位 >Force field development with the density-based energy decomposition analysis method.
【24h】

Force field development with the density-based energy decomposition analysis method.

机译:利用基于密度的能量分解分析方法开发力场。

获取原文
获取原文并翻译 | 示例

摘要

Reliable molecular modeling of complex systems is critically dependent on the accuracy of the employed molecular mechanical force field. In this thesis study, the main research goal is to provide novel insights into key limitations of current force fields, and to facilitate the development of a new generation of ab initio quantum mechanics based force fields. Our theoretical approaches center on a recently developed density-based energy decomposition analysis (DEDA) method. This new advance allows an unprecedented clean separation of intermolecular interactions into very meaningful individual terms for force field analysis and development. Here we first employed the DEDA approach to tackle one well-known challenge for widely used biomolecular force fields, which is the description of hydrogen bonding directionality at the receptor atom. Contrary to the conventional wisdom, we find that the sum of electrostatic and van der Waals interaction components is the dominant factor in determining directional dependence of hydrogen bonding, while the density relaxation term, including both polarization and charge-transfer contributions, plays a very minor role. Then using the DEDA results as reference, we demonstrate that the main failure coming from the atomic point charge model can be overcome largely by introducing extra charge sites or higher order multipole moments. Among all the electrostatic models explored, the smeared charge distributed multipole model (up to quadrupole), which also takes account of charge penetration effects, gives the best agreement with the corresponding DEDA results. Finally, we found that a B3LYP-D3 dispersion term, which is screened at short-range and has a correct long-rang behavior, plus a Born-Mayer exponential function for repulsion is an excellent function form to model vdW interactions. In combination with a smeared charge multipole model for electrostatics interactions, the resulted force field is found to yield excellent results in reproducing rare gas interaction energies calculated at the CCSD(T)/CBS level. These progresses have set a solid foundation for systematic force field development based on first principal quantum mechanical calculations.
机译:复杂系统的可靠分子建模主要取决于所采用的分子机械力场的准确性。在本论文的研究中,主要的研究目标是对当前力场的关键局限性提供新颖的见解,并促进新一代基于从头算量子力学的力场的发展。我们的理论方法基于最近开发的基于密度的能量分解分析(DEDA)方法。这项新的进展允许将分子间的相互作用史无前例地彻底分离为非常有意义的单个术语,以进行力场分析和开发。在这里,我们首先采用DEDA方法来解决广泛使用的生物分子力场的一个众所周知的挑战,即对受体原子上氢键方向的描述。与传统观点相反,我们发现静电和范德华相互作用成分的总和是决定氢键方向依赖性的主要因素,而密度弛豫项(包括极化和电荷转移贡献)起着很小的作用。角色。然后,以DEDA结果为参考,证明通过引入额外的电荷位点或更高阶的多极矩,可以大大克服原子点电荷模型的主要失效。在探索的所有静电模型中,拖尾电荷分布多极模型(高达四极)也考虑了电荷渗透效应,与相应的DEDA结果具有最佳一致性。最后,我们发现B3LYP-D3色散项在短距离进行筛选并具有正确的远距离行为,再加上Born-Mayer排斥力指数函数,是建模vdW相互作用的出色函数形式。与用于静电相互作用的拖尾电荷多极模型相结合,发现产生的力场在复制以CCSD(T)/ CBS水平计算的稀有气体相互作用能方面产生了出色的结果。这些进展为基于第一主要量子力学计算的系统力场发展奠定了坚实的基础。

著录项

  • 作者

    Zhou, Nengjie.;

  • 作者单位

    New York University.;

  • 授予单位 New York University.;
  • 学科 Chemistry Molecular.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 216 p.
  • 总页数 216
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号