首页> 外文学位 >Investigation of interfaces under mechanical and thermal loading using a cohesive zone model
【24h】

Investigation of interfaces under mechanical and thermal loading using a cohesive zone model

机译:使用内聚区模型研究机械和热负荷下的界面

获取原文
获取原文并翻译 | 示例

摘要

Failures of structures is a great concern of engineering for longer and safer service life. The ability to predict a damage and failure depends on understanding the deformation and stress that develop in the material. Damage (micro level failures) and failures often initiate at material interfaces. Interactions between different material phases, as well as crack initiation and propagation, make fracture and damage processes very difficult to analyze. The interfaces between dissimilar layers in the functionally graded hybrid material (FGHC) are the most critical for reliability. The use of different processes and materials to fabricate a hybrid material induce mismatch strains, making interfacial failure a primary damage mechanism. As advanced materials are introduced in load bearing structures in aerospace applications to improve performance, maintenance, and manufacturing, designing safe interfaces becomes a paramount goal. Creating seamless interfaces and mechanical locking between metal and polymer matrix composite layers is possible by fabricating a metal surface with various surface features. One of the joining methods is using carbon nano tube grown on the fabric surface, with the subsequent infusion of resin. This method makes use of grown forest of carbon nano tubes using carbon vapor deposition.;Experimental techniques are well established for determining interlaminar fracture in composite material systems. The mode I interlaminar fracture toughness can be obtained by the mode I test standard, which uses double cantilever beam specimen. Similarly, mode II and mixed-mode properties are extracted by designated test standards, such as end-notch flexure test and mixed mode bending test. Double cantilever beam test is conducted to explore fracture toughness of hybrid interfacesmodi ed by carbon nanotube grown on carbon fabric and Ti-foil as a function of temperature to assess its potential use within FGHC. It is seen that fracture toughness of modi ed interfaces in mode I is higher than the unmodified interfaces.;In the present study, computational assessment of joining a metal laminate to carbon fiber reinforced polymer (CFRP) laminate was undertaken to investigate interlaminar response and mode I and II delamination toughness. The objective of the present research was to develop a computational model to study delamination in laminated composite plates subjected to bending and extensional loads, and to study di erent joining techniques, as well as to predict the thermomechanical interfacial response. This model incorporates extreme environment conditions, such as high temperature to study these joining techniques. Experimental data of DCB tests were obtained in collaboration with Dr. Ochoa's group in order to validate and verify the computational solutions.;The results of this study are expected to provide a better understanding of interface mechanical behavior, thereby provide both materials scientists and designers in selecting alternate material systems and interfaces so that enhanced structural properties such as interfacial strength and durability of the joints subject to out-of-plane bending, impact, and fatigue loading are realized.
机译:为了实现更长和更安全的使用寿命,结构的故障是工程设计中非常关注的问题。预测损坏和故障的能力取决于了解材料中产生的变形和应力。损坏(微级故障)和故障通常在材料界面处引发。不同材料相之间的相互作用以及裂纹的萌生和扩展,使得断裂和破坏过程非常难以分析。功能梯度混合材料(FGHC)中不同层之间的界面对于可靠性至关重要。使用不同的工艺和材料来制造混合材料会引起失配应变,从而使界面破坏成为主要的破坏机制。随着先进材料被引入航空航天应用的承重结构中,以改善性能,维护和制造,设计安全接口已成为首要目标。通过制造具有各种表面特征的金属表面,可以在金属和聚合物基复合材料层之间创建无缝界面和机械锁定。连接方法之一是使用在织物表面生长的碳纳米管,然后注入树脂。该方法利用了通过碳气相沉积法生长的碳纳米管生长林。建立了确定复合材料系统中层间断裂的实验技术。 I型层间断裂韧性可通过使用双悬臂梁试样的I型测试标准获得。同样,模式II和混合模式特性是通过指定的测试标准提取的,例如端切口挠曲测试和混合模式弯曲测试。进行双悬臂梁试验,以研究由碳纤维上生长的碳纳米管和钛箔修饰的混合界面的断裂韧性随温度的变化,以评估其在FGHC中的潜在用途。可以看出,在模式I下,改性界面的断裂韧性比未改性界面高;在本研究中,进行了将金属层压板与碳纤维增强聚合物(CFRP)层压板连接的计算评估,以研究层间响应和模式I和II分层韧性。本研究的目的是开发一种计算模型,以研究层压复合板在弯曲和拉伸载荷下的分层,并研究不同的连接技术,并预测热机械界面响应。该模型结合了极端环境条件(例如高温)来研究这些连接技术。与Ochoa博士的小组合作获得了DCB测试的实验数据,以验证和验证计算解决方案。这项研究的结果有望对界面力学行为有更好的了解,从而为材料科学家和设计人员提供选择其他材料系统和界面,以实现增强的结构特性,例如承受平面外弯曲,冲击和疲劳载荷的接头的界面强度和耐久性。

著录项

  • 作者

    Ozsoy, Ovul Ozgu.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 94 p.
  • 总页数 94
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号