首页> 外文学位 >Long-term stability of self-assembled monolayers on 316L stainless steel and L605 cobalt chromium alloy for biomedical applications.
【24h】

Long-term stability of self-assembled monolayers on 316L stainless steel and L605 cobalt chromium alloy for biomedical applications.

机译:用于生物医学应用的316L不锈钢和L605钴铬合金上的自组装单分子膜的长期稳定性。

获取原文
获取原文并翻译 | 示例

摘要

Surface properties of biomaterial implants play a critical role in determining biocompatibility since the body immediately interacts with the implant surface. Surface modifications using a self-assembled monolayer (SAM) is one method which can provide a wide range of functionalities to control a biomaterial's surface chemistry. This method not only enables manipulation of surface chemistry but also opens up numerous possibilities to tether any biological molecule or therapeutic drugs to a metal biomaterial surface.;A SAM is a single 1-10 nm thick layer of organic molecules self assembled on metal or metal oxide surfaces by adsorption from a solution. The SAM molecule contains (a) a chemical head group which has a strong affinity towards the surface, (b) a long hydrocarbon chain, and (c) a terminal functional group. A variety of biomolecules involving proteins, peptides, DNA, carbohydrates, antibodies, and therapeutics have been attached to SAMs for biomedical applications. Of particular interest is the use of SAMs as a platform for drug delivery from coronary stents, the medical device implanted in over a million patients per year.;Although the use of SAMs in biomedical applications is promising, the long term stability of the monolayers under physiological conditions remains unclear. In addition, SAM coatings have primarily been studied on a variety of mechanically polished metal surfaces. However, most commercially available metal implants such as coronary stents are primarily finished by electrochemical polishing. The goal of this study was to investigate the formation and stability of methyl- and carboxyl-terminated phosphonic acid SAMs on mechanically polished 316L stainless steel (MPSS), electropolished 316L stainless steel (EPSS), and electropolished L605 cobalt chromium alloy (EPCC).;The effect of various annealing conditions on the stability of monolayers was thoroughly investigated. The results showed that when a SAM system is heated above its two-dimensional melting point for 6 hours or more, the SAM quality and ordering begins to decrease. Thus, a mild annealing (below the system two-dimensional melting temperature) may be preferred for increasing SAM stability. Based on the findings in this study, it is recommended to allow SAMs to sit at room temperature for 1 to 18 hours after deposition to provide time for a gradual SAM structural reordering to occur.;Using dodecylphosphonic acid and 11-phosphoundecanoic acid, both methyl- and carboxyl-terminated SAMs were successfully coated and characterized on MPSS and for the first time on EPSS and EPCC. The monolayer stability was investigated in Tris buffered saline (TBS) at 37°C for a period of 28 days using contact angle goniometry, fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. SAMs on SS were partially stable under physiological conditions for up to 28 days, with only a slight decrease in monolayer integrity after immersion in TBS for 1-3 days. Carboxyl-terminated SAMs were more stable than methyl-terminated SAMs on SS. Also, both the carboxyl- and methyl-terminated SAMs were more stable on MPSS than on EPSS. In addition, steam autoclave sterilization did not adversely affect the SAM integrity on EPSS. On EPCC, the integrity of SAMs was severely compromised over 28 days in TBS. The significant instability is most likely due to extensive phosphoric acid contamination from the electropolishing process or inherent differences in the metal oxides.;Overall, this thesis has demonstrated the long-term stability of phosphonic acid SAMs on MPSS or EPSS for potential use in biomedical applications. Although the long-term stability of monolayers on EPCC is inferior to EPSS, a period of SAM stability over 1-3 days may be sufficient to control the initial biological cascade that occurs at the biomaterial surface upon implantation. Hence, phosphonic acid SAMs on EPCC may have potential applications in controlling the initial biological responses to an implant material.
机译:生物材料植入物的表面特性在确定生物相容性方面起着至关重要的作用,因为身体会立即与植入物表面相互作用。使用自组装单层(SAM)进行表面修饰是一种方法,可以提供广泛的功能来控制生物材料的表面化学性质。这种方法不仅可以操纵表面化学,而且为将任何生物分子或治疗药物束缚到金属生物材料表面上提供了许多可能性。SAM是一层自组装在金属或金属上的1-10 nm厚的有机分子层通过从溶液中吸附来氧化表面。 SAM分子包含(a)对表面具有强亲和力的化学头基,(b)长烃链和(c)末端官能团。涉及蛋白质,肽,DNA,碳水化合物,抗体和治疗剂的多种生物分子已连接到SAM,用于生物医学应用。特别令人感兴趣的是使用SAM作为从冠状动脉支架输送药物的平台,该医疗设备每年植入一百万以上的患者。尽管在生物医学应用中使用SAMs是有希望的,但单层的长期稳定性在生理状况尚不清楚。另外,主要在各种机械抛光的金属表面上研究了SAM涂层。但是,大多数市售的金属植入物(例如冠状动脉支架)主要是通过电化学抛光完成的。这项研究的目的是研究在机械抛光的316L不锈钢(MPSS),电抛光的316L不锈钢(EPSS)和电抛光的L605钴铬合金(EPCC)上甲基和羧基末端的膦酸SAM的形成和稳定性。 ;深入研究了各种退火条件对单层稳定性的影响。结果表明,当将SAM系统加热到其二维熔点以上6小时或更长时间时,SAM的质量和有序性开始下降。因此,为了增加SAM的稳定性,温和的退火(低于系统的二维熔化温度)可能是优选的。根据这项研究的结果,建议让SAM在沉积后在室温下放置1至18小时,以便为SAM结构逐步重新排列提供时间;使用十二烷基膦酸和11-膦酸,甲基-和末端为羧基的SAM成功地在MPSS上进行了涂层和表征,并首次在EPSS和EPCC上进行了表征。使用接触角测角法,傅立叶变换红外光谱,X射线光电子能谱和原子力显微镜,在Tris缓冲盐水(TBS)中于37°C进行28天的单层稳定性研究。在生理条件下,SS上的SAM在长达28天的时间内是部分稳定的,在TBS中浸泡1-3天后,单层完整性仅略有下降。在SS上,羧基末端的SAM比甲基末端的SAM更稳定。同样,羧基末端和甲基末端的SAM在MPSS上比在EPSS上更稳定。此外,蒸汽高压灭菌器对EPSS上的SAM完整性没有不利影响。在EPCC上,TBS中SAM的完整性在28天内严重受损。显着的不稳定性很可能是由于电抛光过程中广泛的磷酸污染或金属氧化物的固有差异所致。总体而言,本论文证明了膦酸SAM在MPSS或EPSS上的长期稳定性,可用于生物医学应用。尽管EPCC上单层的长期稳定性不如EPSS,但1-3天的SAM稳定性可能足以控制植入后在生物材料表面发生的初始生物级联反应。因此,EPCC上的膦酸SAM在控制对植入物材料的初始生物反应方面可能具有潜在的应用。

著录项

  • 作者

    Kaufmann, Christopher.;

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Engineering Biomedical.;Engineering Metallurgy.;Engineering Materials Science.
  • 学位 M.S.
  • 年度 2009
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;冶金工业;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:37:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号