首页> 外文学位 >Fabrication of polymer and nanocomposite microstructures and microactuators by capillary infiltration and replica molding.
【24h】

Fabrication of polymer and nanocomposite microstructures and microactuators by capillary infiltration and replica molding.

机译:通过毛细管渗透和复制模制法制造聚合物和纳米复合材料的微结构和微致动器。

获取原文
获取原文并翻译 | 示例

摘要

Addition of micro- and/or nanoscale textures to surfaces can enable engineering of a wide range of properties. Passive surfaces (using fixed microstructures) can manipulate cell adhesion, liquid drag, and thermal and electrical contact resistance. Active surfaces (using shape-changing microstructures) can enable modulation of liquid wetting, adhesion, and optical properties. Nevertheless, it remains a challenge to fabricate the mechanically and environmentally robust microstructures and microactuators in large arrays.;This thesis presents new fabrication methods for microstructured polymer and nanocomposite surfaces. Two approaches are pursued: capillary driven infiltration of fabricated carbon nanotube (CNT) microstructures and replica molding (REM) of master templates in liquid crystal networks (LCNs).;First, it is demonstrated that CNT-polymer microstructures can function as robust large-area master molds. The fabricated microstructures include pins, tubes, re-entrant microwells, bent pillars, and high-aspect-ratio honeycombs (thickness of 400nm, aspect ratio 50:1). All are used as master structures for replica molding. A 25-fold replication sequence is shown with no physical degradation of the master or the replicas. Further, the increased stiffness and toughness of CNT-SU-8 microstructures is quantified.;Second, active surfaces were created by capillary infiltration of paraffin into CNT forests. Large stroke sheet actuators, exhibiting up to 20% thermal strain at 175°C are shown. Third, thermally and optically active LCN microstructure replicas were created. Their generated strains were measured to be 6% and 0.25%, respectively. In situ monitoring of the LCN phase and order was also performed. Although having low strains, optically active microstructures are attractive for future work because they can be actuated individually and remotely.;These scalable methods of fabricating microstructured surfaces, both with robust mechanical properties and active geometries, indicate promise for enhancement of liquid wetting, adhesion, optical properties, and thermal conductivity of surfaces and interfaces. However, further increases in the thermally and optically generated strains are needed to make useful active surfaces. This could be accomplished by either material reformulation, improvements in material processing, or strain amplification via design of microstructure geometry.
机译:将微尺度和/或纳米尺度的纹理添加到表面可以实现多种特性的工程设计。被动表面(使用固定的微结构)可以控制细胞粘附,液体阻力以及热和电接触电阻。活性表面(使用可变形的微结构)可以调节液体的润湿性,粘附性和光学性能。然而,以大阵列的形式制造机械和环境稳健的微结构和微致动器仍然是一个挑战。本论文提出了微结构化聚合物和纳米复合材料表面的新制造方法。追求两种方法:毛细管驱动的制造的碳纳米管(CNT)微观结构的渗透和液晶网络(LCN)中主模板的复制模制(REM)。首先,证明CNT聚合物的微观结构可以起到强大的大作用。区域主模。制成的微结构包括销,管,凹入的微孔,弯曲的柱子和高纵横比的蜂窝(厚度为400nm,纵横比为50:1)。所有这些都用作复制品成型的主体结构。显示了25倍的复制序列,而母版或副本没有物理降解。进一步,量化了CNT-SU-8显微组织增加的刚度和韧性。第二,通过石蜡向CNT森林的毛细渗透产生了活性表面。显示了大行程板执行器,在175°C时表现出高达20%的热应变。第三,创建了具有热和光学活性的LCN微观结构副本。测得它们产生的菌株分别为6%和0.25%。还进行了LCN相和顺序的原位监测。光学活性微结构虽然应变低,但可以单独和远程驱动,因此对将来的工作很有吸引力。这些具有可扩展的制造微结构表面的方法,既具有强大的机械性能,又具有有效的几何形状,表明有望增强液体润湿性,附着力,光学特性以及表面和界面的热导率。然而,需要进一步增加热和光学产生的应变以制成有用的活性表面。这可以通过重新配制材料,改进材料工艺或通过设计微结构几何形状来实现应变放大来实现。

著录项

  • 作者

    Copic, Davor.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号