首页> 外文学位 >Synthesis of semiconducting ceramic nanofibers, development of p-n junctions, and bandgap engineering by electrospinning.
【24h】

Synthesis of semiconducting ceramic nanofibers, development of p-n junctions, and bandgap engineering by electrospinning.

机译:半导体陶瓷纳米纤维的合成,p-n结的发展以及通过电纺的带隙工程。

获取原文
获取原文并翻译 | 示例

摘要

Nanostructured semiconducting metal oxides, such as nanotube, nanowires, nanoribbons and nanofibers are of considerable interest for solar energy conversion, sensors and in various electronic applications. Nanoscale structures especially, nanofibers have unusually high aspect ratio and hence, very high surface area per volume ratio. The characteristic high surface area per unit mass of nanofibers provides detecting sensitivity of part per million and even below, and decrease the response time remarkably in comparison with thin film materials. In this work, several semiconducting metal oxide nanofibers are synthesized by sol-gel processing followed by electrospinning. Fibers are made of ZnO, TiO2 , Al2O3, NiO, CuO, SnO2, TiO2 /Al2O3, TiO2/ZnO, Al doped ZnO, and In doped ZnO materials. The diameters of these electrospun ceramic nanofibers range 50--300 nm. Different analytical techniques are used to characterize ceramic nanofibers which include scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Fourier transform infra red spectroscopy (FTIR), UV-Vis spectroscopy, electrical property (I-V, conductivity) measurements. Fibers are made as randomly oriented fiber mat as well as axially oriented nanofibers in yarns. Making the nanofibers into a twisted nanofiber yarn provides the macroscopic handling capability of the nanofibers while retaining some of the nanoscale properties of materials. Ceramic nanofiber p-n junctions are developed using twisted nanofiber yarns of ZnO and NiO which clearly showed rectifying I-V properties at dark (non-illuminated) condition.;Bandgap energy of ZnO nanofibers are engineered by co-electrospinning of ZnO precursor with dopants (Al or In) in the precursor solution. Doping of ZnO nanofiber matrix with Al and In materials brings about significant structural, electrical, and optical property modification. The optical bandgap energy increases with the addition of Al dopants in the ZnO nanofiber matrix while the bandgap energy of In doped ZnO nanofibers decreases with the increasing concentration of In dopants in the ZnO matrix. Electrospinning proved to be a simple, low cost, and reliable technique for dopant incorporation to attain modified structural, electrical, and optical properties of these semiconducting nanofibers.
机译:纳米结构的半导体金属氧化物,例如纳米管,纳米线,纳米带和纳米纤维,对于太阳能转换,传感器和各种电子应用具有相当大的兴趣。纳米级结构,特别是纳米纤维,具有异常高的长径比,因此单位体积的表面积非常高。与薄膜材料相比,每单位质量的纳米纤维的特征性高表面积提供了百万分之一甚至更低的检测灵敏度,并且显着降低了响应时间。在这项工作中,通过溶胶-凝胶工艺然后静电纺丝合成了几种半导体金属氧化物纳米纤维。纤维由ZnO,TiO2,Al2O3,NiO,CuO,SnO2,TiO2 / Al2O3,TiO2 / ZnO,Al掺杂的ZnO和In掺杂的ZnO材料制成。这些电纺陶瓷纳米纤维的直径范围为50--300 nm。使用不同的分析技术来表征陶瓷纳米纤维,包括扫描电子显微镜(SEM),透射电子显微镜(TEM),热重分析(TGA),X射线衍射(XRD),X射线光电子能谱(XPS),傅里叶变换红外光谱(FTIR),紫外-可见光谱,电性能(IV,电导率)测量。纤维制成无规取向的纤维毡以及纱线中的轴向取向的纳米纤维。将纳米纤维制成加捻的纳米纤维纱可提供纳米纤维的宏观处理能力,同时保留材料的某些纳米级性能。陶瓷纳米纤维pn结是使用ZnO和NiO的加捻纳米纤维纱开发的,这些纱线在黑暗(未照射)条件下具有明显的IV矫正特性; ZnO纳米纤维的带隙能是通过ZnO前驱体与掺杂剂(Al或In )在前体溶液中。用Al和In材料掺杂ZnO纳米纤维基质可显着改善结构,电学和光学性能。随着ZnO纳米纤维基体中Al掺杂剂的加入,光学带隙能量增加,而In掺杂ZnO纳米纤维的带隙能量随ZnO基体中In掺杂剂浓度的增加而减小。事实证明,静电纺丝是掺入掺杂剂以实现这些半导体纳米纤维的改性结构,电学和光学性质的简单,低成本和可靠的技术。

著录项

  • 作者

    Lotus, Adria Farhana.;

  • 作者单位

    The University of Akron.;

  • 授予单位 The University of Akron.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 249 p.
  • 总页数 249
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号